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About This Report 

The U.S. Air Force (USAF) has had long-standing concerns about its supply chains and their 
potential for degradation. Given the varied types of resources for which USAF manages the supply 
chains, the complexity of those supply chains, the reliance on the defense industrial base, and 
opportunities for degradation, the Headquarters U.S. Air Force Deputy Chief of Staff for Logistics, 
Engineering and Force Protection (HAF/A4) asked RAND Project AIR FORCE (PAF) to identify 
technology and investment options to mitigate supply chain degradation, focusing specifically on 
forecasting the demand for legacy aircraft spare parts, applying robotic process automation for supply 
chain management and execution, and mitigating risks associated with cyber integrity. 

The RAND PAF research team employed different methodologies for each of the three lines of 
effort but developed use cases that cut across the different lines of effort to present findings and 
recommendations focused on cyber controls for integrity risks associated with the use of bots, as well 
as demand forecasting. We also highlighted opportunities for USAF to expand its current bot 
initiatives, including a use case that could have value in improving spare part demand forecasts for a 
unique class of parts and a method of approach to future investments, more generally, that could 
improve demand forecasting. 

The research reported here was commissioned by HAF/A4 and conducted within the Resource 
Management Program of RAND Project AIR FORCE as part of a fiscal year 2022 project, 
“Investment Choices to Mitigate Supply Chain Degradation.” This research should be of interest to 
USAF logisticians, as well as other Department of the Air Force (DAF) personnel responsible for 
cyber integrity risks and the current initiative to expand the application of robotic process automation 
across the DAF.  

RAND Project AIR FORCE 
RAND Project AIR FORCE (PAF), a division of the RAND Corporation, is the Department of 

the Air Force’s (DAF’s) federally funded research and development center for studies and analyses, 
supporting both the United States Air Force and the United States Space Force. PAF provides the 
DAF with independent analyses of policy alternatives affecting the development, employment, combat 
readiness, and support of current and future air, space, and cyber forces. Research is conducted in four 
programs: Strategy and Doctrine; Force Modernization and Employment; Resource Management; 
and Workforce, Development, and Health. The research reported here was prepared under contract 
FA7014-22-D-0001.  

Additional information about PAF is available on our website: www.rand.org/paf/ 
This report documents work originally shared with the DAF on September 30, 2022. The draft 

report, dated September 2022, was reviewed by formal peer reviewers and DAF subject-matter 
experts. 

http://www.rand.org/paf/
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Summary 

Issue and Approach 
The U.S. Air Force (USAF) has had long-standing concerns about its supply chains and their 

potential for degradation. Given the varied types of resources for which USAF manages the supply 
chains and opportunities for degradation, the RAND Project AIR FORCE research team identified 
technology and investment options to mitigate supply chain degradation, focusing specifically on 
forecasting the demand for legacy aircraft spare parts, applying robotic process automation (RPA),1 
and mitigating risks associated with cyber integrity. We conducted extensive literature reviews, held 
discussions with subject-matter experts, and employed various analytical methods. For demand 
forecasting, these methods included analysis of recent forecast accuracy data to identify drivers of 
forecast error and an assessment of ongoing efforts to address known issues. For RPA, our analyses 
included a characterization of bot development and identification of potential application areas in the 
logistics, engineering, and force protection (A4) community. For cyber integrity, the analysis involved 
applying a mission assurance approach to identify potential risks and mitigations. 

Key Findings and Conclusions 

Demand Forecasting 
• Primary drivers of demand forecast errors, such as propulsion systems and low demand for 

expensive parts, are well known to personnel who study the problem. 
• Decades of research on demand forecasting suggest there are a variety of methods to forecast 

spare parts demand, although there is not a one-size-fits-all best approach. 
• USAF’s migration to a commercial enterprise resource planning system for demand 

forecasting is already showing promise.2  
• It is unclear whether demand forecast accuracy is resulting in aircraft downtime. 

Application of Robotic Process Automation to Improve Supply Chain 
• The USAF A4 community’s current approach to bot implementation does not allow it to fully 

leverage the potential of bots. 

 
1 RPA is a term used to describe the employment of a software program or application, referred to as a bot, to automate a process 
that is manual, repetitive, and typically manpower intensive. 
2 Through the Enterprise Supply Chain Analysis, Planning, and Execution (ESCAPE) program office, USAF is implementing 
PTC’s service parts management software solution, identified by Accenture as a best-in-class solution for large, complex supply 
chains and in use today by such companies as Airbus, Boeing, and Quantas. 
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• Questions remain about whether USAF personnel possess the technical expertise to fully 
leverage bot technology, and the data suggest this concern is warranted. 

• Unified direction and guidance could help USAF maximize the potential of bots. 

Cyber Tampering 
• Potential vectors for integrity attacks within the supply chain include the software supply 

chain, software vulnerabilities, and credential-based attacks.  
• Risks related to both development and operation of bots underscore the need to consider 

cyber risk across the bot life cycle and incorporate training and best practices. 
• In addition to existing processes, risk-based analysis can drive cybersecurity, engineering, and 

mission-execution decisionmaking for technology under consideration. 
• Current Headquarters U.S. Air Force Deputy Chief of Staff for Logistics, Engineering and 

Force Protection (HAF/A4) risk management framework (RMF) controls are primarily 
focused on detection and are unlikely to sufficiently mitigate focused, tampering-based 
mischief.  

Recommendations 
Demand Forecasting 

• USAF should maximize the potential benefits offered by the investment already made in 
ESCAPE. However, USAF should analyze the value of demand forecast improvements to 
supply chain performance prior to making additional investments. 

• If additional investment in forecast accuracy improvement is warranted, the 448th Supply 
Chain Management Wing should target specific areas of improvement, such as expanded 
causal analysis for parts with intermittent, infrequent, and highly variable demand.  

Application of Robotic Process Automation to Improve Supply Chain 
• USAF should expand the application of bots within the A4 community, including processes 

and data integration not currently accomplished. We provide a suggestion with our bot 
example.  

• USAF should work with the USAF lead for RPA to establish standards for centralized 
development and management of bots and should advocate for funding for increased security 
measures.  

Cyber Tampering 
• USAF should consider mitigation approaches for integrity attacks identified by this analysis, 

especially in bot implementation, as a complement to existing cybersecurity controls.  
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• USAF should continue to evaluate cyber risks in context by implementing a process for 
considering how threats, vulnerabilities, and consequences to missions change as new systems, 
technologies, and information-handling methods are considered and implemented.  

• USAF should employ best practices for executing risk-based processes (e.g., Operationally 
Critical Threat, Asset, and Vulnerability Evaluation [OCTAVE] Allegro),3 such as engaging 
subject-matter experts on the value of information assets to the mission and complementing 
HAF/A4 RMF with a cross-functional approach.   

 
3 OCTAVE Allegro is a risk-based cybersecurity assessment methodology that provides a means to examine the threats, 
vulnerabilities, and consequences of attack within a system. As used in this research, OCTAVE provided a structured approach 
to evaluating the risk to mission posed by cybersecurity threats to information and evaluating alternative mitigations. 
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Chapter 1 

Introduction 

In January 2020, the World Health Organization (WHO) revealed that unexplained illnesses in 
Wuhan, China, were the result of coronavirus disease 2019 (COVID-19). By March 11, 2020, given 
the rising number of infections and the rate of spread, the WHO declared COVID-19 a global 
pandemic.4 Less than two weeks later, analysts were speculating on how COVID-19 could affect U.S. 
Department of Defense (DoD) supply chains; concerns focused on the impacts of production 
shutdowns and labor shortages, as well as single sources of production and supply of unique and 
critical items folding under the weight of financial distress leading to bankruptcy.5 Although concerns 
about the fragility of DoD supply chains were not new, COVID-19 introduced yet another 
unexpected disruption that turned out to have major consequences, particularly for key machine 
subcomponents like chips and microprocessors (which already faced problems) but also for items like 
personal protective equipment and unexpected commodities like toilet paper. 

DoD had already expressed concern about supply chain resiliency tied to operating in a conflict 
against a near-peer adversary capable of creating a contested battlespace that could disrupt lines of 
communication and supply and support to combat forces.6 This concern has been recognized by the 
U.S. government. For example, in 2017, former President Donald Trump issued an executive order 
requiring the Secretary of Defense to conduct a holistic review of the threats to the DoD supply 
chain and industrial base.7 On February 14, 2021, President Joe Biden signed Executive Order 
14017, which led to a study focused on the supply chains that are critical to national security and the 
everyday functioning of the U.S. population. Similar to the 2017 study, the research objectives were 
to identify vulnerabilities and secure four key supply chains, while setting the groundwork to 
instantiate mitigation strategies for the long term.8  

As a service, the U.S. Air Force (USAF) has also long been focused on this problem, which has 
become exponentially more complicated in recent years and decades. There are many reasons for this, 
including the fact that USAF weapon platforms are increasingly integrated, USAF faces a variety of 
obsolescence problems, and USAF struggles to illuminate its own supply chains beyond the first- and 

 
4 Centers for Disease Control and Prevention, “CDC Museum COVID-19 Timeline,” webpage, last reviewed March 15, 2023.  
5 Aaron Mehta, “How Coronavirus Could Impact the Defense Supply Chain,” Defense News, March 20, 2020.  
6 Frank Wolfe, “Joint Warfighting Concept Assumes ‘Contested Logistics,’” Defense Daily, October 6, 2020.  
7 Interagency Task Force in Fulfillment of Executive Order 13806, Assessing and Strengthening the Manufacturing and Defense 
Industrial Base and Supply Chain Resiliency of the United States, September 2018. 
8 The White House, Building Resilient Supply Chains, Revitalizing American Manufacturing, and Fostering Broad-Based Growth: 
100-Day Reviews Under Executive Order 14017, June 2021. 
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second-tier suppliers.9 RAND Project AIR FORCE (PAF) has conducted a long series of studies, 
dating back to the 1960s, on the challenges associated with ensuring secure and stable USAF supply 
chains.  

In addition to the U.S. government renewing its focus on supply chain security, the commercial 
sector has also been independently attacking this problem. The pandemic has simply magnified 
already long-standing and growing issues stemming from such factors as climate change and 
increasing global interdependence. 

For the purpose of this report, we used the Merriam-Webster definition of supply chain: “the 
chain of processes, businesses, etc. by which a commodity is produced and distributed: the 
companies, materials, and systems involved in manufacturing and delivering goods.”10 For USAF, this 
chain encompasses multiple commodities (referred to as classes of supply), which reach end users 
through different mechanisms. First, the industrial base produces and delivers commodities directly 
to USAF. Second, other DoD agencies acquire, manage, and ultimately deliver commodities to 
USAF. An important example of this is jet fuel, the supply chain of which is mostly handled by the 
Defense Logistics Agency (DLA). Finally, organic USAF organizations manage and deliver 
commodities to other USAF consumers. For example, the 448th Supply Chain Management Wing 
(SCMW) and the 635th Supply Chain Operations Wing within the Air Force Sustainment Center 
(AFSC) are responsible for such items as spare parts, equipment, repair capacity, and fuels 
management within USAF. For the purposes of this report, we defined supply chain degradation as 
any activity that disrupts the timely production and distribution of a commodity or compromises its 
quality. 

A preliminary literature search on analysis of USAF and DoD supply chains revealed multiple 
studies by RAND alone that spanned a wide variety of important supply chain topics. Some research 
focused on the supply chain managed by USAF or DoD organizations.11 Other research focused on 
the industrial base side of the equation.12 Some research focused on enterprise-level challenges,13 and 
other efforts focused more deeply on single commodities.14  

 
9 Supply chain illumination is a supply chain risk management process in which an organization will conduct a thorough review 
of its suppliers, or supply chains for particular parts, to identify vulnerabilities. USAF has launched an illumination effort to 
improve its awareness of risks to its supply chains. See Michele Donaldson, “Team Illuminates Supply Risks That Impact 
Defense,” Eglin Air Force Base, August 31, 2022.  
10 “Supply Chain,” webpage, Merriam-Webster, undated. 
11 See, for example, Eric Peltz, Amy G. Cox, Edward W. Chan, George E. Hart, Daniel Sommerhauser, Caitlin Hawkins, and 
Kathryn Connor, Improving DLA Supply Chain Agility: Lead Times, Order Quantities, and Information Flow, RAND 
Corporation, RR-822-OSD, 2015; and G. J. Feeney and C. C. Sherbrooke, Systems Analysis and Supply Management, RAND 
Corporation, RM-4054-PR, 1964. 
12 Anthony G. Bower and Steve Garber, Statistical Forecasting of Bankruptcy of Defense Contractors: Problems and Prospects, 
RAND Corporation, MR-410-AF, 1994. 
13 Nancy Y. Moore, Elvira N. Loredo, Amy G. Cox, and Clifford A. Grammich, Identifying and Managing Acquisition and 
Sustainment Supply Chain Risks, RAND Corporation, RR-549-AF, 2015; and Caolionn O’Connell, Elizabeth Hastings Roer, 
Rick Eden, Spencer Pfeifer, Yuliya Shokh, Lauren A. Mayer, Jake McKeon, Jared Mondschein, Phillip Carter, Victoria A. 
Greenfield, and Mark Ashby, Managing Risk in Global Supply Chains, RAND Corporation, RR-A425-1, 2021.  
14 See, for example, Caolionn O’Connell, Bryan Boling, Jonathan Balk, James R. Broyles, and Monika Cooper, Hidden 
Disruptions to the Supply Chain: Resistance Is Futile, RAND Corporation, 2021, Not available to the general public; Dwayne M. 
Butler, Anthony Atler, Stephen M. Worman, Lily Geyer, and Bonnie Magnuson, Identifying Efficiencies in the Supply Chain for 
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Scope of This Effort  
Clearly, supply chain degradation can come from many sources, and, thus, securing and 

increasing the reliability of the myriad supply chains that ultimately deliver commodities to end users 
is vastly complex. Mitigation approaches correspondingly vary. Generally speaking, DoD, which 
relies on the industrial base, worries about both security and reliability of products, and, to this end, 
it has to deal with diminished sources of supply for their production lines or service (which includes 
both raw materials and subcomponents), labor and workforce disruptions, counterfeits, malicious 
tampering of electronics goods, bankruptcy, government regulation, and more. For those parts of 
supply chains over which USAF and DoD have more control, stakeholders seek solutions to mitigate 
disruptions resulting from poor inventory management and planning, cyber intrusion, poor repair 
planning, inadequate tracking of external supply chains, unstable budgets, and others. There are a 
variety of general approaches that USAF can take to attack these challenges, including economic 
incentives, improved internal processes and workforce management, and new technologies. To this 
end, Headquarters U.S. Air Force Deputy Chief of Staff for Logistics, Engineering and Force 
Protection (HAF/A4) asked RAND PAF to identify technology and investment options to mitigate 
supply chain degradation. 

 Technology, of course, still represents a very broad set of options that could potentially mitigate 
USAF-specific supply chain concerns. Thus, HAF/A4 asked us to focus on near-term options 
related to the parts of the supply chain that USAF directly controls. In particular, HAF/A4 
identified three main lines of effort, which subsume the remainder of this report. They are the 
following: 

• Demand forecasting: How does USAF forecast demand today and how could demand 
forecasting be improved?  

• Bots: How are bots used in USAF today and how can they be used to improve supply chain 
effectiveness and efficiency? 

• Cyber integrity: How can USAF identify and mitigate integrity-based risk? Because 
HAF/A4 is very concerned about detecting incidents of data tampering, we looked for 
approaches USAF can take to detect and prevent this problem.15 

Each line of effort involved different methodologies, which are described in their respective 
chapters. During our research, interdependencies and links between the three separate research 
efforts emerged. For example, we came to understand that a fundamental challenge associated with 
forecasting the demand for spare parts is that the data needed to potentially improve forecasting are 
not easy to compile. This finding sets the stage for the possible use of a bot that can assemble the 
necessary dataset and even do analysis, which might further inform demand forecasts. Not only does 
this help to reveal a major bot-related finding—that HAF/A4 should expand its thinking about bots 
to cross-functional realms that might even harness machine intelligence—but it also inspired us to 

 
Training Ammunition: Methods, Models, and Recommendations, RAND Corporation, RR-952-A, 2016; and Elvira N. Loredo, 
John F. Raffensperger, and Nancy Y. Moore, Measuring and Managing Army Supply Chain Risks: A Quantitative Approach by 
Item Number and Commercial Entity Code, RAND Corporation, RR-902-A, 2015. 
15 The sponsor expressed cyber-tampering events as those that would be classified as mischief rather than mayhem. Examples 
included such things as manipulating data or algorithms that would generally go unnoticed during daily operations. 



4

suggest a detailed bot use case to HAF/A4. Our research also revealed the need for caution in 
implementing bots, because they introduce a major, but easy to overlook, potential risk of cyber 
vulnerabilities. For this reason, we used bots as a springboard to illustrate a cybersecurity approach to 
minimize access points for cyber tampering. Figure 1.1 visualizes some of the connections between 
the three lines of effort just described.

Figure 1.1. Relationship Between Three Lines of Effort Addressed in This Report

Along with the scoping guidance described previously, the sponsor asked that we be cognizant of 
and consider how our recommendations would tie to ongoing efforts within USAF that touch on our 
three lines of effort.16 Thus, our general approach for this project included an effort to connect with a 
broad community of stakeholders that might have interest and equities in the outcomes of our 
research.

Organization of This Report
The remainder of this report is organized as follows:

• Chapter 2 presents our assessment of how USAF could improve the accuracy of legacy 
aircraft spare parts demand forecasting.

• Chapter 3 provides the results of our bots analysis and includes a suggested bot use case that 
connects to demand forecasting.

• Chapter 4 presents a risk-based cybersecurity approach based on the Operationally Critical 
Threat, Asset, and Vulnerability Evaluation (OCTAVE) Allegro process and our analysis of 
mitigation options to address cyber-tampering vulnerabilities. We illustrate this approach 
using three different use cases. The first focuses on cyber tampering of demand forecasting

16 For example, for demand forecasting, USAF had just migrated from a legacy system to a new commercial product. Similarly, 
USAF and HAF/A4 have also started an initiative to gather ideas on how bots could be used to eliminate repetitive labor-
intensive tasks being performed by service members.
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tools and systems. The second employs the OCTAVE Allegro process to examine ways to 
harden future bots against cyber tampering. The third is intended to suggest specific ways to 
improve the cybersecurity of the bot proposed in Chapter 3. 

• Chapter 5 summarizes the most-important observations and findings of our research and 
presents our recommendations.  

• Appendix A is an annotated bibliography of research related to our demand forecasting 
analysis. 

• Appendix B includes additional details associated with our bots research. 
• Appendix C provides additional details associated with our cyber-tampering research. 
• Appendix D provides the rationale and motivation behind the selection of OCTAVE Allegro 

for our cyber analysis. 
• Appendix E presents OCTAVE risk and mitigation analysis details specific to our three use 

cases. 
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Chapter 2 

Evolution of Spare Part Demand 
Forecasting in USAF 

The Air Force Materiel Command (AFMC) manages materiel support for USAF, and the 
command’s AFSC is responsible for managing secondary inventory, including spare parts. 
Specifically, AFSC’s 448th SCMW is responsible for the planning and execution of spare part 
requirements for a wide variety of systems, including aircraft; engines; intercontinental ballistic 
missiles; and space command, control, communication, and intelligence (C3I) equipment.17 The 
448th SCMW and its 3,000 civilian and military personnel conduct spare parts demand planning, 
supply planning, and inventory optimization to ensure that the complex USAF supply system 
delivers the right part to the right place at the right time.18 As operating and support costs have 
increased over the years, USAF has continually looked for ways to improve the efficiency of its 
resource use.19 USAF spends billions of dollars annually on spare parts, so potential improvements to 
inventory management continue to receive considerable attention. Demand forecasting, a principal 
component of inventory management, generally refers to the act of predicting future customer 
demands so inventory managers can develop inventory requirements to satisfy demands when they 
occur. In the USAF supply chain enterprise, a demand is defined as an indication of a requirement, a 
requisition, or a similar request for an item of supply or individual item to support the repair and 
maintenance of weapon systems, reparable end items, and equipment.20 Inaccurate forecasting of 
these demands can lead to either excess inventory with associated cost or shortfalls that could affect 
mission effectiveness. As a result, demand forecasting accuracy is under continuous review by 
USAF,21 and it is reported semiannually to the Office of the Secretary of Defense (OSD).22 

 
17 “448th Supply Chain Management Wing,” webpage, Tinker Air Force Base, undated. 
18 “448th Supply Chain Management Wing,” undated. 
19 Thomas Light, Michael Boito, Tim Conley, Larry Klapper, and John Wallace, Understanding Changes in U.S. Air Force 
Aircraft Depot-Level Reparable Costs over Time, RAND Corporation, 2018, Not available to the general public. 
20 AFMC Manual 23-101 Volume 1, Materiel Management General D200A/N Information, Department of the Air Force, 
November 17, 2016.  
21 420th Supply Chain Management Squadron (SCMS) personnel, discussion with authors, January 3, 2022. 
22 DoD, Supply Chain Metrics Guide, 3rd ed., 2021. 
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U.S. Department of Defense Emphasis on Improving Demand 
Forecasting  

There has been considerable effort across DoD to improve supply chain management. From 
2007 to 2009, the Government Accountability Office (GAO) conducted audits of the military 
services’ and DLA’s spare part inventories and found significant excess of some items across all 
services and substantial shortfalls for certain items. GAO recommended that the services improve 
demand forecasting, reduce inventory, evaluate parts retention decisions, and establish metrics for 
tracking cost efficiency of inventory management.23 Around the same time, the fiscal year (FY) 2010 
National Defense Authorization Act (NDAA) included a section directing a series of plans requiring 
DoD to rightsize its secondary items inventory and continue effective and efficient materiel support 
to warfighters.24 The NDAA laid out eight required elements for DoD to review to rightsize the 
inventory: demand forecasting procedures, total asset visibility, excess on-order secondary inventory, 
economic retention requirements, contingency retention requirements, a potential shift to direct 
vendor delivery for some items, no recurring demand items, and additional disposal.25 In response, 
DoD released the Comprehensive Inventory Management Improvement Plan (CIMIP) in November 
2010.26 The CIMIP included a subplan focused on each of these eight elements. 

The subplan on demand forecasting expanded on an existing 2009 OSD initiative to improve 
demand forecasting throughout the life cycle of secondary items managed by the services and DLA. 
The goal of the demand forecasting subplan was to improve the prediction of future demand so that 
inventory requirements more accurately reflect actual needs. To accomplish this goal, the subplan 
proposed five actions: the identification of improved methods for demand forecasting, 
implementation of standard metrics to assess forecast accuracy and bias, expansion of collaborative 
forecasting, improvement in the determination of inventory levels for low-demand items, and 
reduction of the investment risk of consumable items initially entering the inventory.27  

In the following years, OSD commissioned three studies on demand forecasting to satisfy specific 
parts of the CIMIP, and the services and DLA all developed specific improvement plans. Following 
subsequent reviews in 2015 and 2017, the GAO removed DoD inventory management, which 
included demand forecasting, from its list of high-risk areas for the first time since 1990, citing 
sufficient improvement across all five high-risk criteria: leadership commitment, capacity, action plan, 

 
23 GAO, Defense Inventory: Defense Logistics Agency Needs to Expand on Efforts to More Effectively Manage Spare Parts, GAO-
10-469, May 11, 2010; GAO, Defense Inventory: Army Needs to Evaluate Impact of Recent Actions to Improve Demand Forecasts 
for Spare Parts, GAO-09-199, January 12, 2009; GAO, Defense Inventory: Management Actions Needed to Improve the Cost 
Efficiency of Navy’s Spare Parts Inventory, GAO-09-103, December 12, 2008; and GAO, Defense Inventory: Opportunities Exist 
to Save Billons by Reducing Air Force’s Unneeded Spare Parts Inventory, GAO-07-232, April 27, 2007. 
24 Public Law 111-84, National Defense Authorization Act for Fiscal Year 2010, October 28, 2009. Secondary refers to items of 
supply, including reparable components, subsystems and assemblies, consumable repair parts, bulk items and materials, 
subsistence, and expendable end items (i.e., clothing and other personal gear), that are not defined as principal items. A principal 
item would be a weapon system (Department of Defense Manual 4140.01 Volume 2, DoD Supply Chain Materiel Management 
Procedures: Demand and Supply Planning, U.S. Department of Defense, 2018). 
25 A no recurring demand item is defined as an item for which demand is low or sporadic. 
26 GAO, DOD’s 2010 Comprehensive Inventory Management Improvement Plan Addressed Statutory Requirements, but Faces 
Implementation Challenges, GAO-11-240R, January 7, 2011. 
27 GAO, 2011. 
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monitoring, and demonstrated progress.28 The GAO credited USAF with institutionalizing the 
demand forecast accuracy (DFA) metric and efforts to review 200 items per quarter. 

Demand Forecasting in USAF  
With the context of the importance of demand forecasting at the DoD level, we turn to the 

USAF-specific demand forecasting approaches and metrics. Long before the recent emphasis on 
improving forecast accuracy, USAF depended on a reliable supply of spare parts and, thus, has a rich 
history of approaches to forecasting demand. A persistent theme since the earliest studies of demand 
for spare parts is that demand is inherently uncertain.29 The sources of the uncertainty are generally 
grouped into two categories: (1) inherent statistical uncertainty arising from the stochastic nature of 
peacetime operations and (2) external fluctuations induced by contingency operations.30  

Over time, two approaches have emerged to mitigate the uncertainty. The first approach is to 
improve demand forecasting via improved models, analysis of drivers, and increased data collection 
and aggregation. The second approach is to focus on strategies and processes that are adaptive and 
robust against inevitable uncertainty. The emphasis placed on each approach has fluctuated over time 
depending on world events and fiscal realities. The general consensus is to predict as accurately as 
possible, while retaining sufficient resilience to accommodate uncertainty.31 With the recent 
emphasis on prediction at the DoD level and decreases in the cost of data storage and emerging 
methods in data science (in particular, the application of machine learning [ML] and artificial 
intelligence [AI]), there has been renewed interest in exploring more sophisticated techniques for 
demand forecasting. Before exploring those options, we describe the legacy demand forecasting 
methodology used by USAF, present our analysis of recent demand forecasting performance, and 
describe a major change to that methodology that is already in motion. 

Legacy Demand Forecasting 
The 448th SCMW uses the Requirements Management System (RMS) to track needs and 

project requirements to enable maintenance and repair of USAF weapon systems. The Secondary 
Item Requirements System, a legacy information technology (IT) system aligned under the RMS and 
referred to as D200A, has been the primary planning component of RMS used to compute spare part 
requirements on an aggregate basis and apply worldwide assets to those requirements.32 One key 
function of D200A is forecasting the demand for spare parts. The total demand for a part is driven 

 
28 GAO, High Risk Series, GAO-15-290, February 11, 2015; and GAO, Progress on Many High-Risk Areas, While Substantial 
Efforts Needed on Others, GAO-17-317, February 15, 2017. 
29 For the earliest RAND report on the topic, see B. B. Brown and M. A. Geisler, Analysis of the Demand Patterns for B-47 
Airframe Parts at Air Base Level, RAND Corporation, RM-1297, 1954. See also Bernice B. Brown, Characteristics of Demand 
for Aircraft Spare Parts, RAND Corporation, R-292, 1956. 
30 James S. Hodges and Raymond A. Pyles, Onward Through the Fog: Uncertainty and Management Adaptation in Systems 
Analysis and Design, RAND Corporation, R-3760-AF/A/OSD, 1990. 
31 Hodges and Pyles, 1990. 
32 AFMC Manual 23-101 Volume 1, 2016. 
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primarily by base-level maintenance (referred to as organization and intermediate maintenance [OIM]) 
and depot-level maintenance (DLM).  

OIM requirements are driven by both scheduled and unscheduled maintenance. For base-level 
demand, the basic model in D200A calculates straight-line forecast factors based on past use.33 It 
calculates the demand rate as the total number of demands in the past eight quarters divided by the 
total flying hours in the past eight quarters. The future requirement is then predicted by multiplying 
the projected flying hours in some future period by the demand rate. This is referred to as the eight-
quarter moving average forecast. D200A also includes alternative model options, including a four-
quarter moving average, exponential smoothing, and a regression technique. In addition, the number 
of flying hours is only one of several options for program data that can drive the need for spare parts. 
Other types of OIM program data include inventory, sorties, drone recoveries, and ammunition.34 
However, the current system allows the use of only one type of program data at a time, and flying 
hours is the most commonly used.35 The model assumes a perfectly linear relationship between flying 
hours and demands, and past research has highlighted the possibility that such a relationship does 
not always hold.36 

DLM requirements are driven by three program types: programmed depot maintenance (PDM), 
engine overhauls (EOHs), and next higher assembly management of items subject to repair (NHA 
MISTR). PDM involves a schedule-based inspection and correction of defects that requires skills, 
equipment, or facilities not normally possessed at operating locations. EOHs include the disassembly 
and inspection, repair, replacement, and servicing of engines. NHA MISTR requirements are driven 
by the DLM of aircraft-level parts.  

The 448th SCMW assesses DFA to identify problems, track progress toward goals, and report 
performance to USAF leaders and DoD. Using guidance from DoD as part of the CIMIP and now 
outlined in the DoD Supply Chain Metrics Guide,37 USAF uses two metrics to assess forecast 
accuracy: DFA and bias.38 DFA is a measure of the percentage difference between the forecasted and 
actual demand. It is calculated as 1 minus the absolute difference between actual demand and 
forecasted demand, weighted by the dollar value of each part, divided by the dollar weighted value of 
the actual demand. USAF uses latest acquisition cost to define the dollar value for each part.39  

 
33 AFMC Manual 23-101 Volume 5, Equipment Specialist Data and Reports (D200A, D200N), Department of the Air Force, 
December 15, 2021. 
34 AFMC Manual 23-101 Volume 5, 2021. 
35 Joshua D. DeFrank, “A Condition Based Maintenance Approach to Forecasting B-1 Aircraft Parts,” Air Force Institute of 
Technology, March 3, 2017.  
36 Craig C. Sherbrooke, Using Sorties vs. Flying Hours to Predict Aircraft Spares Demand, Logistics Management Institute, 1997; 
and Thomas R. O’Neal, Sortie-Based Aircraft Component Demand Rate to Predict Requirements, Air Force Institute of 
Technology, March 2020. 
37 DoD, 2021.  
38 There are a variety of forecast accuracy metrics commonly used in literature and practice. For an overview, see Rob J. 
Hyndman, “Another Look at Forecast-Accuracy Metrics for Intermittent Demand,” Foresight, No. 4, June 2006. DFA, as 
defined here, is a type of percentage error. Percentage errors have the advantage of being scale independent and, thus, useful for 
comparing forecast performance. They can be problematic for intermittent demand because a zero-demand case results in an 
undefined value. Because DFA typically aggregates across parts, this drawback is somewhat alleviated for the purpose of this 
analysis.  
39 Latest acquisition cost is the most recent acquisition cost but could be from several years in the past. 
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The equation for DFA is shown here:40 

𝐷𝐷𝐷𝐷𝐷𝐷 = %1 −	∑ (|$%&'()*&'	'&,-.'	–	-)*0-1	'&,-.'|×'311-%	4-10&)!""!
∑ (-)*0-1	'&,-.'!""! ×'311-%	4-10&)

) × 100. 

The other metric, bias, is a measure of the over or under percentage difference between the 
forecasted and actual demand. The equation is shown here: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 	∑ ([$%&'()*&'	'&,-.'	–	-)*0-1	'&,-.']×'311-%	4-10&)!""!
∑ (-)*0-1	'&,-.'!""! ×'311-%	4-10&)

× 100. 

DFA provides information on the overall magnitude of the forecasting error, and bias provides 
insight into whether that error tends to be a result of over- or under-forecasting. Over-forecasting 
results in a positive bias because predicted demand is much greater than actual demand. Under-
forecasting results in a negative bias because predicted demand is much lower than actual demand. 

Figure 2.1 shows the DFA and bias for all USAF-managed spare parts from 2016 to 2021 (as 
calculated in March of each year). The 448th SCMW sets a target DFA of 71 percent. In 2016–
2017, they nearly met that target, but from 2017 to 2021, DFA decreased from 70 percent to 50 
percent. Bias has increased from 10 percent to 30 percent over the same period, indicating that the 
reduction in DFA is primarily a result of over-forecasting. To improve forecast accuracy, it is 
important to understand the sources of forecast error so that the investment of time and resources 
can be applied to the areas of largest potential benefit. In the next section, we examine the drivers of 
recent forecast error. 

Figure 2.1. Demand Forecast Accuracy and Bias, 2016–2021 

 

 
40 The national item identification number (NIIN) is a nine-digit number used to identify a specific part. Each part in the 
supply system will have a unique NIIN (DLA, undated).  
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SOURCE: Produced using data from USAF, 420th Supply Chain Management Squadron, AF DFA and Bias with IMR 
Charts, PowerPoint presentation, July 11, 2022.
NOTE: These values were derived from a Microsoft PowerPoint briefing provided by 420th SCMS personnel (USAF, 
420th Supply Chain Management Squadron, 2022).

Drivers of Recent Demand Forecast Accuracy and Bias
To assess drivers of recent changes in DFA and bias, we obtained more-detailed data from the 

448th SCMW for 2020–2021. The data provided included quarterly reports from September 2020 
to December 2021, generated by the Forecast Analysis Comparison Tool (FACT) Plus, the web 
application that 448th SCMW personnel use to track DFA. Each report included detailed 
information about each USAF-managed part, including group, squadron, latest acquisition cost, total 
annual forecast (as forecasted the prior year), and total annual demand. It also included annual 
forecast and demand for OIM and DLM. This granular level of detail enabled a decomposition of 
DFA and bias in a variety of ways, including by OIM versus DLM, part type, and demand quantity, 
as discussed in the following sections.

Figure 2.2 shows the total, OIM, and DLM DFA from September 2020 to December 2021. 
Each quarter represents an annual DFA, so the figure essentially shows a rolling annual calculation. 
The total DFA is approximately 50 percent during this period, the same as in Figure 2.1. However, 
when analyzing OIM and DLM separately, we can see that OIM DFA is higher (at approximately 60
percent), while DLM DFA is below 20 percent. OIM accounts for more than 75 percent of the dollar 
value of total demand, so it has a larger impact on total DFA. OIM DFA is still below the 71 percent
target, while DLM is significantly below that target.

Figure 2.2. Demand Forecast Accuracy—Total, Organization and Immediate Maintenance, and 
Depot-Level Maintenance

SOURCE: Produced using data from USAF, Forecast Analysis Comparison Tool, database, 2020–2021.
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Figure 2.3 shows the total, OIM, and DLM bias. Total bias is approximately 30 percent over this 
period. OIM bias is somewhat less than the total, and DLM bias is much greater. For both OIM and 
DLM, this indicates a systematic over-forecasting over the two years.

Figure 2.3. Bias—Total, Organization and Immediate Maintenance, and Depot-Level 
Maintenance

SOURCE: Produced using data from USAF, 2020–2021.

These results might seem somewhat surprising. As mentioned previously, DLM demands 
depend on PDMs and EOHs, both scheduled maintenance activities. However, forecast accuracy for 
those activities is much lower than for OIM activities. 

DLM Forecast Error
To better understand the drivers of this DLM forecast error, we examined the contribution of 

different part types to the overall error. The 448th SCMW comprises SCMSs that are each 
responsible for managing certain types of parts.41 The forecast accuracy data provided by 448th
SCMW included the SCMS that is responsible for each part. Thus, by showing error by squadron,
we can see generally what type of part is driving total error. Figure 2.4 shows the total error versus
total actual for each part type.42 The error is shown on the y-axis and is the numerator of the DFA 
equation shown previously—the absolute value of the predicted demand minus the actual demand, 
weighted by dollar value. The x-axis is the denominator of the DFA equation—the total value of the 
actual demand. The orange line shows the 71 percent DFA (or 29 percent error) target. For example, 

41 See U.S. Air Force, 72nd Air Base Wing Public Affairs, Tinker Air Force Base 80th Anniversary Units and Mission Structure, 
2022.
42 Throughout this report, the term actual often stands alone. As related to forecasting the expected demand for spare parts 
required by USAF, the term actual refers to the number of parts that were, in fact, requested by USAF over a given period. For 
example, expected demand (forecasted) compared with actual demand (requested). The term actual is also used in comparing 
forecasted value of parts versus the value of parts requested in retrospect. 
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if the actual value of DLM repair parts in a given year is $1 billion, we would expect $290 million in 
error for a DFA of 71 percent (1–[$0.29B/$1B] = 71 percent).43 This means that points above the 
DFA target line have more than 29 percent error, and the distance from the target line allows easy 
inspection of key drivers. This clearly shows that propulsion parts are driving DLM forecast error.

Figure 2.4. Depot-Level Maintenance Dollar Weighted Error Versus Actual by Part Type

SOURCE: Produced using data from USAF, Forecast Analysis Comparison Tool, database, 2020–2021.
NOTE: EW = electronic warfare; ICBM = intercontinental ballistic missile; Mat’l = materiel; ATCALS = air traffic control 
and landing systems; #N/A = associated with an uncategorized item.

Figure 2.5 shows a similar chart but with bias shown on the y-axis. Values greater than zero 
indicate a positive bias resulting from over-forecasting. Clearly, the forecast error associated with 
propulsion parts is driven by systematic over-forecasting. Discussions with 448th SCMW personnel 
indicated that this systematic over-forecasting is a well-known phenomenon. EOHs usually have very 

43 The total value of the error and actuals mentioned here and throughout the remainder of the report is based on calculations 
using the latest acquisition cost, per DoD guidance. However, most of these parts are repaired, and repair costs can be much 
lower than acquisition cost. The dollar value of the error should not be interpreted as money that could have been spent 
elsewhere directly. It only provides a relative metric to assess forecasts.
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specific work packages, with parts that can have long lead times; thus, the depot could be forced to 
order the entire work package and then install new parts only as required.

Figure 2.5. Depot-Level Maintenance Dollar Weighted Bias Versus Actual by Part Type

SOURCE: Produced using USAF, 2020–2021.

Organization and Intermediate Maintenance Forecast Error
As we turn to OIM demand, which is primarily driven by flight line failures and scheduled and 

unscheduled maintenance, we note that a common issue in demand forecasting for spare parts is 
intermittent demand.44 DoD defines the following four levels of demand intermittency:45

• limited: demand in less than 10 percent of historical demand periods
• uneven: demand in 10–60 percent of historical demand periods

44 Çerağ Pinçe, Laura Turrini, and Joern Meissner, “Intermittent Demand Forecasting for Spare Parts: A Critical Review,”
Omega, Vol. 105, No. 1, July 2021.
45 Department of Defense Manual 4140.01 Volume 2, 2018. 
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• erratic: demand in 60–85 percent of historical demand periods
• continuous: demand in more than 85 percent of demand periods.

Forecasting demand becomes increasingly difficult as demands decrease to uneven or limited
intermittency. There are limited ways to forecast uneven or limited intermittent demand levels, and 
we sought to (1) understand the magnitude of this effect and (2) investigate potential issues beyond 
demand intermittency. Unfortunately, the forecast accuracy data available to us included demands 
aggregated annually, so we could not specifically analyze intermittency. Instead, to provide a proxy 
for demand intermittency, we grouped parts according to the number of demands in a year to 
separate the effects of low-demand parts (ten or fewer demands in a year, a number that has been 
suggested in previous research)46 and parts with larger annual demands. Figure 2.6 shows the dollar 
weighted error versus dollar weighted actual for OIM parts in a similar format as the previous figures
for DLM parts but grouped by annual demand. The orange line again represents the DFA target of 
71 percent (error of 29 percent). It shows that, for parts with an annual demand of 50 or more, 
forecasts are generally at or above 71 percent, while parts with demand less than 50 have error greater 
than 29 percent.

Figure 2.6. Organization and Immediate Maintenance Dollar Weighted Error Versus Actual 
by Demand Quantity

SOURCE: Produced using USAF, 2020–2021.

Figure 2.7 shows the bias associated with each demand quantity. All categories have a positive 
bias, indicating over-forecast, but the effect is larger for the low-demand items. These results were 

46 Mary E. Chenoweth, Jeremy Arkes, and Nancy Y. Moore, Best Practices in Developing Proactive Supply Strategies for Air Force 
Low-Demand Service Parts, RAND Corporation, MG-858-AF, 2010.
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hardly surprising, and discussions with personnel from the 448th SCMW indicated clear awareness 
of these challenges. In the legacy system, inventory levels for these types of parts were set using a
Logistics Management Institute–developed tool called Peak Policy and Next Gen (PNG).47

Figure 2.7. Organization and Immediate Maintenance Dollar Weighted Bias Versus Actual 
by Demand Quantity

SOURCE: Produced using USAF, 2020–2021.

To further investigate the drivers of OIM forecast error beyond issues associated with low 
demand, we excluded all parts in the low-demand category (ten annual demands or fewer) and again 
plotted the total error versus actual (Figure 2.8). Forecast accuracy for most part types was near the 
DFA target with a few exceptions. Aircraft-related parts are forecasted with accuracy exceeding the 
target of 71 percent. However, a few part types are forecasted significantly worse in some years,
including propulsion, EW, and special operations parts.

Discussions with personnel at the 448th SCMW indicated that many propulsion parts are life
limited, meaning they are replaced prior to failure, and the Air Force Life Cycle Management Center
(AFLCMC) produces forecasts for these parts. Over-forecasting often results from these 
replacements because they are planned but do not actually occur. For the special operations class of 
parts, 448th SCMW stated that a higher variance in mission profile (i.e., annual flying hours) results
in more uncertainty in part failures and, thus, lower forecast accuracy. Although these explanations 
seem reasonable, we did not independently verify them.

47 Tovey C. Bachman, Pamela J. Williams, Kristen M. Cheman, Jeffrey Curtis, and Robert Carroll, “PNG: Effective Inventory 
Control for Items with Highly Variable Demand,” Interfaces, Vol. 46, No. 1, 2015. 
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Figure 2.8. Organization and Immediate Maintenance Dollar Weighted Error Versus Actual 
by Part Type, Excluding Low-Demand Parts

SOURCE: Produced using USAF, 2020–2021.

Figure 2.9 shows the corresponding bias. Again, a positive bias is observed across most part types,
indicating systematic over-forecasting.
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Figure 2.9. Organization and Immediate Maintenance Dollar Weighted Bias Versus Actual 
by Part Type, Excluding Low-Demand Parts

SOURCE: Produced using USAF, 2020–2021.

Summary for Depot-Level Maintenance and Organization and Immediate 
Maintenance

To summarize, our analysis highlighted the following sources of forecast error (see Figure 2.10):

• Error associated with propulsion parts (EOH or OIM) accounted for an average of 26
percent of forecast error across the periods analyzed.

• Error associated with other DLM maintenance (PDM) accounted for an average of 18
percent of forecast error.

• Error associated with low-demand OIM parts accounted for 18 percent of forecast error.
• Error associated with non-low-demand OIM parts accounted for 38 percent of forecast error.
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Figure 2.10. Summary of Forecast Error Sources

SOURCE: Produced using USAF, 2020–2021.

Addressing each of these sources of error likely requires a different approach. USAF is in the 
midst of a major change to its supply chain planning system, which could address some of these 
issues. In the next section, we briefly describe the new system and qualitatively assess how it might 
address forecast error. In the final sections of this chapter, we review recent demand forecasting 
literature to identify potential improvements to demand forecasting and discuss the role of demand 
forecasting in supply chain management.

USAF Migration to Enterprise Supply Chain Analysis, Planning, and 
Execution

USAF has been using D200A as the primary planning component for supply chain management 
of spare parts for decades. Although the program has met the needs of USAF, the program’s 
architecture of specialized systems and varied databases requires a high degree of manual 
manipulation, has become more difficult to maintain, and is difficult to link with enterprise-level 
processes. At the same time, commercial enterprise resource planning systems (ERPs) have become 
widely used throughout industry, by the other services, and by DLA.48

USAF had been considering moving toward an ERP since at least 2010, when it sponsored a 
demonstration of a commercial-off-the-shelf (COTS) tool for supply chain planning. In 2016, USAF 
awarded a contract for delivery of an integrated supply chain planning and scheduling service to 
ultimately replace D200A.49 That effort became known as the Enterprise Supply Chain Analysis, 
Planning, and Execution (ESCAPE) program, which aims to improve USAF’s supply chain planning 
capabilities across demand forecasting, supply planning, and inventory control.

48 Accenture Federal Services, Sustainment Lifecycle Phase Forecasting and the Impact on Business Outcomes, July 2013, Not 
available to the general public.
49 Sandy Windsor, “Escaping Today’s Supply Chain Challenges,” Air Force Sustainment Center, September 27, 2017.
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The ESCAPE program office is implementing PTC’s service parts management (SPM) software 
solution, identified by Accenture as a best-in-class solution for large, complex supply chains and in 
use today by such companies as Airbus, Boeing, Embraer, and Quantas.50 ESCAPE consists of five 
mission area capabilities—demand planning, inventory planning, supply planning, exception 
management, and performance management—that together should achieve such benefits as 
improved DFA, reduced lead times, improved cost estimates, and reduced planning workload.51 Of 
particular relevance is the way in which the demand planning capability could achieve improved 
demand forecasting. The demand planning capability in ESCAPE includes multiple demand 
forecasting techniques, where demand is defined as a request for a reparable or consumable part used 
during the repair and maintenance of USAF weapon systems, reparable end items, and equipment.52  

ESCAPE will provide two types of forecasting techniques for OIM demand: statistical and 
causal. The specific statistical techniques available as part of the SPM product are proprietary but 
generally include most standard time series forecasting methods that forecast future demand based 
on historical data.53 SPM includes a best-fit function that compares forecast methods and selects the 
best forecast for each part type. SPM also includes built-in functionality to calculate demand 
intermittence and variance and applies special forecast methods to this subset of parts. 

Causal forecasting is used when demand is driven by use. In its initial configuration, causal 
forecasting will implement the legacy forecasting capability as described in the previous section, 
“Legacy Demand Forecasting,” where causal types include flying hours, squadrons, equipment 
months, sorties, drone recoveries, and ammunition expenditures, and only one causal type is assigned. 
SPM provides the capability to assign multiple causal types but will be limited because of current 
USAF data limitations. 

DLM demand is forecasted using the scheduled event maintenance (SEM) method. In this 
method, a bill of material and use rates of component parts are used to create the demand forecast. As 
in the legacy system, this method will be used for PDMs, EOHs, and NHA MISTR. Such event 
data as event (e.g., EOH), event product (e.g., F100 engine), event schedule (e.g., two overhauls per 
month), and event location (e.g., depot) will be loaded manually by users. SEM uses the line scrap 
rate, the replacement repair rate, and the line repair rate in conjunction with the event data to 
calculate the demand forecast.  

USAF’s implementation of SPM has been ongoing since 2016, and FY 2022 (the year this study 
was conducted) was the first year in which SPM was being used to generate demand forecasts. 
Discussions with personnel at 448th SCMW indicated that they were taking a measured approach in 
the rollout of ESCAPE, carefully managing change in the shift from D200A. In its first year of 
operation, ESCAPE was using the same input data as used previously by D200A but applying the 
best-fit statistical models for roughly two-thirds of the parts, which included the special forecast 

 
50 Blumberg Advisory Group, Spare Parts Management Software State of the Art Benchmark Evaluation, 2020. For PTC case 
studies, see Parametric Technology Corporation, “Case Studies,” webpage, undated. 
51 420th SCMS personnel, discussion with authors, January 3, 2021. 
52 Department of the Air Force Guidance Memorandum 2021-01 to Department of the Air Force Manual 23-122, Materiel 
Management Procedures, July 7, 2021. 
53 For a review of time series forecasting, see Jan G. de Gooijer and Rob J. Hyndman, “25 Years of Time Series 
Forecasting,” International Journal of Forecasting, Vol. 22, No. 3, 2006. 
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models for intermittent demand mentioned previously. The remaining one-third continued to be 
forecast via the legacy straight-line causal forecast based on flying hours. The parts for which causal 
flying hour forecasts are used were determined by a manual assessment of the amount of change over 
time expected for certain parts, given program information.  

For FY 2022, the 448th SCMW tracked and compared metrics for accuracy based on forecasts 
by both SPM and D200A. For FY 2022, the SPM forecast accuracy was higher than the D200A 
forecast accuracy for the same period (SPM 49 percent versus D200 42 percent). After FY 2022 the 
448th SCMW no longer tracked D200A forecasts, so further comparisons are not possible. 
However, the SCMW anticipates additional forecast improvements as it continues to shift parts 
from the legacy forecasting techniques to the SPM statistical methods. It plans to officially evaluate 
additional improvements at the end of FY 2024.54  

In the longer term, the 448th SCMW envisioned that the new demand planning process would 
more tightly integrate with the other supply chain planning functions and that this transformed 
process would place emphasis on combining the mathematical (data-driven) forecasting methods 
with improved collaborative processes to determine best possible demand forecasts.  

Although there are some early signs of success, several challenges remain for the ESCAPE 
program. ESCAPE will still rely on the complex and disparate legacy systems and data sources, as it 
is not set to replace all of RMS. This has several implications. First, it means that although improved 
algorithms might provide modest improvements in forecast accuracy, there is limited ability to fully 
leverage the capabilities of ESCAPE by using data in new or better ways (e.g., by incorporating 
models that include multiple causal types) unless data are collected and integrated in different ways. 
Second, RMS is funded to do quarterly or monthly updates of key information sets, so forecast 
adjustments will remain periodic rather than be made in real time.  

Insights from Academic Literature 
Demand forecasting for spare parts is not a challenge unique to USAF. Companies across a 

variety of industries maintain inventories of spare parts to ensure equipment availability. Although 
specific goals might vary between military and commercial contexts, they share the primary challenge 
of balancing significant inventory purchase and holding cost with equipment downtime. Spare parts 
demand forecasting is a central component to this cost-availability trade-off and has therefore 
received significant academic and practical attention over the past 50 years that could help inform 
USAF going forward.55 Several recent papers have provided comprehensive reviews of demand 
forecasting; we do not provide an additional comprehensive review here. Instead, we focus on specific 
findings highlighted in past research that might be of particular interest to USAF.56  

 
54 420th SCMS personnel, email to authors, January 5, 2024. 
55 Pinçe, Turrini, and Meissner, 2021. 
56 For a comprehensive review of demand forecasting methods, see Pinçe, Turrini, and Meissner, 2021; and Boylan and 
Syntetos, 2009. For a review of the gaps between forecasting theory and practice, see Aris A. Syntetos, Mohamed Zied Babai, 
John Boylan, Stephan Kolassa, and Konstantinos Nikolopoulos, “Supply Chain Forecasting: Theory, Practice, Their Gap and 
the Future,” European Journal of Operational Research, Vol. 252, No. 1, November 2015; and Andrea Bacchetti and Nicola 
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Think of Forecasting as a System, Not a Technique 
Boylan and Syntetos (2009) introduced a framework for forecasting that is composed of a pre-

processing phase, a processing phase, and a post-processing phase, which are all underpinned by a 
forecast support system.57  

Pre-processing encompasses the classification of demand as fast or slow moving, intermittent or 
lumpy. Best practices for classification tend to segment demand by mean time between demands and 
the coefficient of variation of demand sizes.58 Classification in this manner facilitates the selection of 
the forecasting method.  

The processing phase is the application of a forecasting technique to generate the forecasted 
demand. The best forecast method varies based on demand pattern, and best practices typically 
suggest applying different methods specific to part type. Many forecasting techniques for spare part 
demands have been put forward and are typically categorized as either time series methods or causal 
(sometimes referred to as installed base) methods. A short review of various modeling techniques is 
provided in the next sections. 

Finally, the post-processing phase includes adjustments to the statistical forecast made by the user. 
Such adjustments are common in practice, though implications for forecast accuracy have shown 
mixed results. Strategies for improvements in the post-processing phase include mechanisms to help 
users better understand the implications in adjustments to the statistical forecasts. 

Traditional Models Continue to Provide Value 
Time series models use historical data to generate demand forecasts, absent any contextual 

information. Classical methods (such as moving averages and exponential smoothing)59 are the most 
widely used in practice, and there is empirical support for the continued use of these simple 
techniques for fast-moving demand.60 For intermittent demand, several more-sophisticated models 
have been developed, including Croston’s method and several subsequent methods that are variations 
of it.61 These models forecast the interval between demand arrivals and the demand size separately via 
exponential smoothing, which tends to provide better forecasts for intermittent demand patterns. All 
these parametric time series methods require an assumption about the underlying demand 
distribution. Nonparametric time series models reconstruct the empirical distribution of the demand. 

 
Saccani, “Spare Parts Classification and Demand Forecasting for Stock Control: Investigating the Gap Between Research and 
Practice,” Omega, Vol. 40, No. 6, December 2012. 
57 John E. Boylan and Aris A. Syntetos, “Spare Parts Management: A Review of Forecasting Research and Extensions,” 
International Journal of Imaging Systems and Technology Journal of Management Mathematics, Vol. 21, No. 3, November 12, 
2009. 
58 Aris A. Syntetos, John E. Boylan, and J. D. Croston, “On the Categorization of Demand Patterns,” Journal of the Operational 
Research Society, Vol. 56, No. 5, August 25, 2004. 
59 A moving average essentially assigns equal weight to all past data points included in the forecast calculation, while exponential 
smoothing decreases the weight exponentially for points further back in time. 
60 Spyros Makridakis and Michèle Hibon, “The M3-Competition: Results, Conclusions and Implications,” International Journal 
of Forecasting, Vol. 16, No. 4, 2000.  
61 J. D. Croston, “Forecasting and Stock Control for Intermittent Demands,” Operational Research Quarterly, Vol. 23, No. 3, 
September 1972.  
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Traditional nonparametric models include bootstrapping methods that involve consecutive sampling 
from the data to construct an empirical distribution, though these methods have received 
considerable criticism and are not widely used in practice. Despite the advances in spare parts 
demand forecasting, there is no conclusive best forecasting method because different methods have 
shown superior results in different studies depending on the accuracy metrics used and characteristics 
of the demand.62 

Emerging Models Are Showing Promise but Require Further Investigation 
More-recent nonparametric methods include the use of ML techniques (neural networks [NNs] 

in particular) to learn demand patterns directly from the data through supervised learning.63 These 
methods are particularly appealing (at least in theory) for predicting intermittent demand, given their 
nonlinear learning function. However, results to date have been somewhat mixed. In one case study 
on business aviation parts, researchers found that NNs showed improvements over traditional 
forecasting methods, provided that the model included sufficient demand features.64 A different case, 
still related to commercial aviation, found that NNs outperformed some traditional forecasting 
methods but not others.65  

There has also been renewed interest in causal models. These models attempt to account for the 
underlying demand-generating factors associated with the product’s installed base, or the number of 
products still in use. The previous time series methods all rely on historical demands and, therefore, 
provide only reactive forecasts. Characterizing the factors that generate the demand allows proactive 
forecasts that anticipate future demand based on the expected changes to these factors. A literature 
review of causal forecasting for spare parts found the following three main sources of information 
that drive demand:  

• the size and status of the installed base  
• the maintenance policy 
• the environmental factors that affect reliability.66  

The review found that causal models in the literature are increasing in complexity over time through 
use of increased installed base information and that results show promising performance in terms of 
forecast accuracy, although evaluations and validations are not always conducted in standardized 
formats, making specific improvements difficult to assess.67 Research being conducted for the 

 
62 Bacchetti and Saccani, 2012. 
63 M. Z. Babai, A. Tsadiras, and C. Papadopoulos, “On the Empirical Performance of Some New Neural Network Methods 
for Forecasting Intermittent Demand,” International Journal of Imaging Systems and Technology Journal of Management 
Mathematics, Vol. 31, No. 3, July 2020.  
64 K. Nemati Amirkolaii, A. Baboli, M. K. Shahzad, and R. Tonadre, “Demand Forecasting for Irregular Demands in Business 
Aircraft Spare Parts Supply Chains by Using Artificial Intelligence (AI),” International Federation of Automatic Control-
PapersOnLine, Vol. 50, No. 1, July 2017. 
65 Babai, Tsadiras, and Papadopoulos, 2020. 
66 Sarah Van der Auweraer, Robert N. Boute, and Aris A. Syntetos, “Forecasting Spare Part Demand with Installed Base 
Information: A Review,” International Journal of Forecasting, Vol. 35, No. 1, 2019. 
67 Van der Auweraer, Boute, and Syntetos, 2019. 
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Republic of Korea’s military has suggested that incorporating additional feature sets related to the 
installed base (e.g., reliability and operating environment) can improve forecast accuracy.68 A recent 
study by LMI found that data sparsity limits the potential of ML techniques to improve demand 
forecasting when using part demands alone, but ML models of maintenance events did have the 
potential to improve forecasts over traditional time series models.69 In addition, recent RAND 
research suggests that NNs outperform traditional techniques for forecasting failures of certain 
parts.70 

Data Integration and Cleaning Is a Challenge  
As discussed, an area of recent active research is the expansion of causal models to predict spare 

parts demand driven by the increased availability, storage, and processing of data. Of particular 
interest is the link between part demand, use factors, and maintenance policies. As noted in one of 
the reviews, existing “systems typically spread these data over many disparate tables and/or separate 
systems. One apparently banal but nevertheless important challenge for software providers thus is to 
access and combine all relevant data.”71 A second paper, specific to the use of maintenance 
information in conjunction with part failure data to generate better forecasts, noted that: 

The main challenge to implement our method is the collection of accurate data. Our 
method requires keeping track of historical machine sales and discards to monitor 
the evolution of the installed base over time, as well as a history of past part failures, 
and information on (past and future) preventive maintenance interventions. 
Therefore, forecasting becomes the outcome of an inter-organizational process, 
where cooperation and information sharing (for example on historical failures, 
maintenance actions, and product sales) between different departments within the 
same company is needed.72 

Demand Forecasting in the Broader Context of Supply Chain 
Planning 

It is generally asserted that improvements to demand forecasting will reduce excess inventory or 
improve aircraft availability, but this assertion is difficult to demonstrate. The discussion on over- or 
under-forecasting the demand for spare parts is nuanced. Under-forecasting demand could result in 

 
68 Boram Choi and Jong Hwan Suh, “Forecasting Spare Parts Demand of Military Aircraft: Comparisons of Data Mining 
Techniques and Managerial Features from the Case of South Korea,” Sustainability, Vol. 12, No. 15, July 2020; Hanjun Lee and 
Jaedong Kim, “A Predictive Model for Forecasting Spare Parts Demand in Military Logistics,” 2018 Institute of Electrical and 
Electronic Engineers International Conference on Industrial Engineering and Engineering Management (IEEM), December 2018.  
69 Sergio Posadas, Carl M. Kruger, Catherine M. Beazley, Russell S. Salley, John A. Stephenson, Esther C. Thron, and Justin 
D. Ward, “Forecasting Parts Demand Using Service Data and Machine Learning,” Logistics Management Institute, January 
2020. 
70 Li Ang Zhang, Yusuf Ashpari, and Anthony Jacques, Understanding the Limits of Artificial Intelligence for Warfighters: Volume 
3, Predictive Maintenance, RAND Corporation, RR-A1722-3, 2024.  
71 Syntetos et al., 2015, p. 16. 
72 Van der Auweraer, Boute, and Syntetos, 2019, p. 148. 
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parts not being available when needed to repair an aircraft, and thereby contribute to aircraft 
downtime. In that regard, over-forecasting demand is preferred, and generally is not problematic for 
low-cost parts. However, for expensive parts, over-forecasting demand results in increased “value of 
secondary item inventory,” a supply chain metric where lower is better.73 The relationship certainly 
makes logical sense, but demand forecasting is just one component of a complex planning process to 
ensure that the right part is at the right place at the right time.  

To understand how demand forecasting fits into the broader context of supply chain planning, 
we conducted a thorough review of all metrics laid out in the Supply Chain Metrics Guide.74 The 
metrics guide serves as a reference for the comprehensive set of DoD supply chain metrics that 
enables DoD to monitor supply chain performance. The guide includes diagnostic, functional, and 
outcome metrics across various attributes of the supply chain, including materiel readiness, 
responsiveness, reliability, cost, and planning. The guide provides a definition for each metric and 
describes the links between individual metrics. 

One thing that the metrics guide does not include is an integrated view of all metrics that shows 
their interrelationships. Combining the defined logical linkages for each individual metric produces 
the integrated metrics diagram. An excerpt of the complete diagram, highlighted in Figure 2.11, 
shows that DFA is a logical driver of excess on-hand and aircraft downtime via wholesale supply 
availability, which affects not mission capable for supply (NMCS) backorders and, subsequently, 
NMCS. However, in each case it is one of six or more potential drivers. DFA is also a driver of excess 
inventory, which drives the value of secondary item inventory, which is another contributing factor to 
wholesale supply availability. The point of this exercise was to assess how improving DFA 
contributes to the overall outcome metrics associated with costs and materiel readiness. Although the 
logical connection can be made, the degree of impact cannot be assessed without more analysis, which 
was beyond the scope of this effort.  

In its review of DFA, LMI was not able to correlate forecast error with either excess or shortfalls 
using historical data and concluded that excess and shortfalls are driven by a combination of factors.75 
A subsequent paper by Accenture provided simulated outcomes that did show that improved 
forecasting led to a small decrease in inventory and a more significant reduction in backorders.76  

 
73 DoD, 2021, p. 52. 
74 DoD, 2021.  
75 Walter D. Atchley, Dorothy M. Clark, Salvatore J. Culosi, Lori Dunch, Robert C. Kline, Thomas E. Lang, Randy L. Moller, 
Matthew R. Peterson, and Michael R. Pouy, Lifecycle Forecasting Improvement: Causative Research and Item Introduction Phase, 
Logistics Management Institute, Report DL920T1, November 2010.  
76 Accenture Federal Services, 2013. 
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Figure 2.11. Integrated Representation of Demand Forecast Accuracy–Related Supply 
Chain Metrics 

 

SOURCE: Produced using information from DoD, 2021. 
NOTE: DLR = depot-level reparable. 

Observations and Findings  
In summary, our analysis led to the following observations and findings: 

• Demand forecasting for spare parts is a topic that has received significant attention both 
inside and outside USAF for decades. There are a variety of methods to forecast spare parts 
demand, though there is not a one-size-fits-all approach that has been shown to be the best in 
all cases. The best approach tends to depend on such things as characteristics of the demand 
and availability and quality of the data.  

• Because there is not a single solution to demand forecasting, we examined the sources of 
demand forecast error based on recent USAF forecast accuracy data that might highlight 
potential solutions. This analysis revealed sources of error; personnel within the 448th 
SCMW who study the problem were mostly aware of these errors, but they might not be 
commonly understood across the broader logistics, engineering, and force protection (A4) 
community. Most notably: 

- Demand for parts associated with programmed actions (e.g., EOHs, PDM) is a large 
source of forecast error. 

- Parts with low demand contribute disproportionately to forecast error.  
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• USAF is in the midst of a major change to the way it forecasts spare parts demand as it shifts 
from D200A to ESCAPE. ESCAPE will use a best-in-class software product that could 
address several sources of the forecast errors identified and is already showing promising 
results. In particular, the best-fit time series methods could improve forecast accuracy for 
high-demand parts, and the special methods for intermittent or highly variable demand could 
improve forecast accuracy for low-demand parts, as defined in this report. 

• There is ongoing research both within DoD and across industry on the use of more 
sophisticated techniques, such as AI/ML, for demand forecasting, though additional research 
is needed prior to broad implementation for USAF. These techniques could be the most 
beneficial to improve causal models where current time series forecasting techniques do not 
perform well. These methods will likely require better integration of data, including part 
demand, use factors, and maintenance policies. 

• Demand forecasting is just one part of supply chain planning, and it is unclear the degree to 
which errors in demand forecasting (versus performance of other elements of supply chain 
management) are resulting in increased aircraft downtime. 
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Chapter 3 

Bots for the USAF Supply Chain 

USAF service members, civilians, and contractors are often burdened with repetitive tasks that 
occupy time better spent elsewhere. To alleviate time spent on these tasks, free people to focus on 
analytical work, and increase efficiency and consistency of repetitive processes, USAF has endeavored 
to apply business process automation. Process automation presents a significant opportunity for 
USAF to expedite many of its high-volume, manual processes, including those required for supply 
chain management. To this end, the A4 community has already started working on bots, a type of 
software that can automate manual processes, scrape data, and even use AI/ML to aid 
decisionmaking. However, process automation has risks; adopting any new technology requires 
consideration of the potential benefits and drawbacks. Thus, HAF/A4 asked us to investigate how it 
should move forward with applying bots to the management of its internal supply chains. In this 
chapter, we seek to provide a deeper understanding of what bot-enabled increased automation would 
entail for USAF’s supply chains, including the types of bots that add the most value, methods for 
measuring return on investment (ROI), the key parameters that must be defined before development, 
and the risks that automation presents.  

Methodology 
Our analysis of bots for USAF supply chains used a variety of qualitative methods. We used a 

significant literature review to define and characterize bots. We held numerous discussions with 
USAF stakeholders and automation and supply chain subject-matter experts (SMEs) inside and 
outside RAND to delineate the bot progress made so far by USAF and to identify ideas for further 
bot investments by the A4 community. Bots for USAF supply chains go beyond automation of 
routine tasks; they can be cross-functional and even analytical.  

Bots are a growing technology resource that can be applied to diverse uses. However, we also 
found that bots are not consistently defined in technology literature, and so confusion can arise as to 
exactly what bots are and how they can be applied. This combination can make it challenging for 
decisionmakers to figure out how to approach bot development or which tasks to prioritize. 
Therefore, we begin by introducing a comprehensive bot taxonomy developed by Lebeuf et al. (2019) 
to classify bot features (a more detailed description of the taxonomy appears in Appendix B).77 These 
features are pivotal to understanding the benefits that a bot could provide and the security risks it 
could introduce. This trade-off between risk and reward is certainly not unique to bots, but as USAF 

 
77 Carlene Lebeuf, Alexey Zagalsky, Matthieu Foucault, and Margaret-Anne Storey, “Defining and Classifying Software Bots: 
A Faceted Taxonomy,” 2019 Institute of Electrical and Electronic Engineers/Association for Computing Machinery 1st International 
Workshop on Bots in Software Engineering (BotSE), 2019. 
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increases its use of bots, it is essential that the service examine both. Thus, we describe the status of 
bot development and use in USAF and in commercial supply chains and discuss potential risks 
involved. Finally, we describe a potential bot concept that we believe will be valuable to merging 
maintenance and failure data for a variety of purposes, including demand forecasting. 

Defining and Describing Bots 
An initial challenge for bot development is the lack of consensus on what constitutes a bot. This 

can confuse or limit policymakers’ ability to understand bot technologies and how to approach their 
development. In the case of robotic process automation as a service (RPAaaS), it can also lead to 
challenges in comparing bot service providers. In this section, we present a definition of bot and a 
review of a comprehensive bot taxonomy to characterize bots (with further details in Appendix B). 
We believe these should be useful to USAF as it goes forward with bot development and 
deployment. 

From its inception, the term bot has been defined many ways. Simple definitions include “a 
software version of a mechanical robot”78 and “a computer program that performs automatic 
repetitive tasks.”79 However, as bots have become more sophisticated and diverse, more conceptual 
characterizations have been proposed, such as “the bridge between data and action.”80 

One reason that the term bot has been difficult to define precisely is that numerous other 
software terms define similar technologies. For instance, a script is a small piece of software that 
performs a task but does not perform any significant computing on its own. Scripts are typically 
written in the eponymously termed scripting language (which is different from programming languages 
in that it is typically interpreted, not compiled). Computer programs are larger pieces of software, 
written in the aforementioned programming languages, that perform significant computing. A bot 
lies somewhere between these definitions, depending on the level of sophistication and the software 
used to create the bot. 

In this report, we leverage the broad definition proposed by Lebeuf et al. because it robustly 
applies to all types of bots. It is “the interface that provides the services to the user . . . a bot is everything 
required to present the service to the user . . . and provides additional value on top of its services.”81  

Examples of services a bot can provide include automation, lowering the barrier of access to data, 
pulling from multiple data sources, and presenting visualizations. Software services are either external 
or internal to the bot, where internal services are local or offline and external services are online. 
Some bots can provide internal and external services. A bot can have a combination of internal and 
externally accessed services. For example, in the context of USAF, a bot might interact with data on 
such an enterprise system as the Logistics, Installations, and Mission Support—Enterprise View 
(LIMS-EV) (external) and generate a presentation of those data with a local PowerPoint document 

 
78 Andrew Leonard, Bots: The Origin of New Species, Penguin Books Limited, 1998.  
79 “Bot,” Merriam-Webster, webpage, undated. 
80 Suman Deb Roy, “What Bots May Come: An In Depth Discussion of a Learning Architecture for the Next Paradigm,” 
Chatbots Magazine, March 20, 2016.  
81 Lebeuf et al., 2019. 



  30 

(internal). Users interact with software bots in multiple ways, including the command line, graphical 
user interfaces, touch interfaces, and spoken and written language. 

With this working definition of a bot, we describe a structured way for USAF to approach bots in 
terms of function and level of sophistication. Then, we present a taxonomy that captures the primary 
attributes of a bot’s environment, execution, and interactions with others. This taxonomy will allow 
USAF to clearly define a bot application prior to its development. Clear, a priori characterization of a 
bot holds a variety of advantages, including identification of potential security vulnerabilities, 
planning for bot development cycles, and development of a bot as user-friendly and useful as possible 
from the outset.  

Characterizing Bots 
A bot can be classified along two primary dimensions: its function and its level of sophistication. 

In this section, we present these dimensions as a starting point for USAF to characterize its current 
and future bot development.  

As stated above, bots have been applied to automate processes by collecting, cleaning, analyzing, 
transmitting, and presenting information. It is important for USAF bot requesters and developers to 
consider the function they wish the bot to perform. Simply wanting a process to be automated is not 
sufficient. For instance, crawler bots might be developed to continuously scour data for misalignment 
between data systems, or they might continuously examine procurement data for orders that deviate 
from the norm as orders are introduced to the system. A scraper bot could be developed to pull cost 
and availability data from the websites of suppliers, such as DLA, and consolidate them into a cost 
database. 

Moreover, transactional bots could be developed to place orders or regularly pull and consolidate 
data from systems that govern maintenance, supply, and operations. Then, a productivity bot could 
schedule exercises, and a documentation bot could create briefings to inform leadership of inventory 
levels, operational readiness, and upcoming exercises. Crawlers, scrapers, transactional bots, 
productivity bots, and documentation bots all exist to automate, but they function in different and 
important ways.  

Table 3.1 provides a more comprehensive list of bot types and their corresponding functions, 
including such popular types as crawlers that capture data from websites, transaction bots that work 
on a user’s behalf, and documentation bots that create reports and briefings. These different types can 
be instantiated using robotic process automation (RPA) or intelligent automation (IA). 

Table 3.1. Bot Functions 

Type Function 

Crawlers Run continuously in the background to fetch and store data from 
websites, application programming interfaces, etc. 

Scrapers Used to download data from the web, sometimes to republish the data 
elsewhere 

Information bots Bring information to users 
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Type Function 

Transactional bots Work on the user’s behalf, interacting with external systems to 
automatically execute transactions when a condition is met 

Productivity bots Increase productivity by automating simple tasks 

Collaboration bots Enable users to communicate and collaborate 

Hacker bots Distribute malware and exploit vulnerabilities in security 

Testing bots Detect bugs and errors in code  

Code bots Facilitate more-efficient coding 

Documentation bots Produce documentation using input data 

Translation bots Translate data from one language to another 

SOURCES: Features information from Lebeuf et al., 2019; Radware, “Types of Bots: An In-Depth Guide 
by Radware,” undated. 

 
As the applications of bots have expanded over time, the universe of bots has become too large for 

a function-based classification system to be fully sufficient by itself. Thus, it is additionally helpful to 
characterize by level of sophistication. In this report, we focused on two levels of sophistication: RPA 
and IA. The primary distinction between these two is that an RPA bot is explicitly defined by 
programming logic, while an IA bot uses ML algorithms. Note that both RPA and IA can be highly 
sophisticated pieces of code, but the former relies on the programmer to flesh out the entire 
capability, while bots constructed with IA are trained on huge datasets and are less prescriptive (and 
thus also are more likely to be black boxes). Although these categories might not be comprehensive of 
all bot types, they represent the two primary classes of bots described in technology literature and 
produced by commercial enterprise.  

Although ML and AI techniques are being used in USAF, we are not aware of IA bot 
applications using these techniques that are currently in use. Challenges to IA bot development in the 
very near term include airmen’s limited technological expertise and unsuitable data for IA 
applications. These challenges are discussed in more detail later in this chapter. Although these 
challenges may be overcome in the future, we focused the bulk of our attention on RPA bots and the 
current capabilities of the A4 community.  

Robotic Process Automation  
RPA mimics the behavior of a human interacting with software applications.82 These types of 

bots are valuable for automating processes that 

• are manual and repetitive (e.g., copying data from one data source into another) 
• are rule-based (usually using “if-then-else” logic, where the programmer has no uncertainty of 

underlying algorithms)  

 
82 “What Is Robotic Process Automation?” webpage, Association for Intelligent Information Management, undated. 
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• involve readable, electronic, standardized inputs (e.g., printed text; if one wanted a computer 
to “read” handwritten text, that would require ML) 

• involve high-volume processing (e.g., repetitive calculations on large datasets) 
• have a low exception rate (e.g., a formula applies to most observations in a dataset).83 

RPA bots are useful for speeding up tedious processes in environments where system change is 
infeasible or in progress. In USAF, the types of processes that are the best candidates for RPA bots 
include creating regular briefings, consolidating data from disparate systems, and inputting 
information from forms. These are processes that do not involve uncertainty, opinions, or judgment 
calls, but rather are tedious, routine tasks that put a heavy burden on humans. RPA also helps avoid 
errors that humans are prone to make—for example, when inputting data from one system into 
another—because RPA bots never deviate from their encoded routines, do not misread information 
as human eyes can, and do not make keystroke errors. However, bots can still commit errors 
stemming from bugs in programming or by amplifying data that were initially entered incorrectly. 
Because the bot will never deviate from its code, this can sometimes cause much greater damage than 
a human user would have caused by making a mistake only once. A human might also catch 
underlying data errors if a data point looks wrong. 

RPA has proven useful in multiple areas of business, including supply chain management, human 
resources, and accounting. Table 3.2 lists some common business areas and processes in commercial 
industry in which RPA has been valuable. USAF performs all of these processes daily. For supply 
chain management, RPA has improved inventory management, freight management, demand 
planning, and other processes.84  

Table 3.2. Common Processes Automated Using Robotic Process Automation 

Business Area Processes 

Supply chain management • inventory management 
• demand and supply planning 
• work order management 
• invoice and contract management 
• processing returns 
• freight management 

Human resources • data entry 
• payroll 
• time management 
• benefits 
• recruitment 
• compliance and reporting 

 
83 Bill Nystrom, Democratizing Automation for Every Airman, PowerPoint presentation, UiPath, undated. 
84 Nystrom, undated. 
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Business Area Processes 

Finance and accounting • vendor management 
• procure-to-pay 
• collections 
• sales order management 

IT services • server and application monitoring 
• routine maintenance 
• batch processing 
• email processing and distribution 
• password reset and unlocking 
• backup and restoration 

SOURCE: Features information from Nystrom, undated. 

 
Planning to build a bot requires several criteria to be considered (Table 3.3).85 To ascertain 

whether RPA is applicable, bot developers should consider process predictability and whether 
manual work is involved. Also, if systems are upgraded frequently, it is important to consider how a 
bot might break or become obsolete with regular system changes. To assess whether RPA will add 
value, developers should consider transaction volume and the number of systems that a user must 
access to complete the process. If a process is repeated often and involves navigating multiple systems, 
RPA might add significant efficiency.  

Table 3.3. Criteria for Determining Utility of Robotic Process Automation for Bot Functions 

Criterion Description 

Manual work involved RPA is best applied to expediting manual processes that take up too much time. 
If a process involves repetitious, tedious manual work, RPA might be a great 
solution to free up workers’ time. 

Number of systems 
accessed 

Bots can access and go between systems much faster than a human can. If the 
process involves accessing multiple systems, automation might be valuable. At 
the same time, increasing the number of systems involved also increases the 
complexity of the automation, as each system could require distinct credentials 
and connection protocols. 

Transaction volume Referring to how often a process is executed, transaction volume is an 
important criterion to consider. Processes that are not executed often might not 
be worth the investment. 

Error or rework 
prevalence 

RPA adds consistency to processes and prevents some human errors from 
occurring. If the process involves such error-prone operations as manually 
entering data, performing manual information queries, or making complex 
calculations using data from multiple systems, automation could eliminate 
several errors. 

Process predictability RPA works only for processes that are rule based and without uncertainty, 
where identical inputs will yield identical outputs. 

 
85 HAF/A4 Logistics Automation, “Technology Modernization Fund: Full Project Proposal,” PowerPoint presentation, 
October 2021. 
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Criterion Description 

System upgrade 
frequency 

System upgrades can affect how a bot functions, potentially causing 
malfunctions. If systems are continuously changing because of upgrades, the 
lifetime of a bot might not be as long as desired. 

SOURCE: Features information from HAF/A4 Logistics Automation, 2021. 

 
Before embarking on an automation effort, it is also important to fully document the workflow 

for the bot and identify sources of potential complexity. This will inform how difficult programming 
the bot will be and the financial and time investment that might be required. Table 3.4 includes 
important sources of bot complexity. Especially relevant for USAF are those indicators related to 
leveraging multiple applications and navigating disparate data systems using varying types of 
connectivity across multiple levels of security. Importantly, RPA bots should be viewed as a 
temporary means of connecting systems, whereas more-fundamental system integration is preferred 
where possible. However, integrating systems can be hard for many reasons, including incompatible 
software (e.g., Mac, Windows, or Linux), varying degrees of security (e.g., public information, 
controlled unclassified information, or classified information), and credentialed access (e.g., common 
access card [CAC], certain work users). For instance, integrating supply and maintenance systems 
might be more challenging if USAF supply personnel should access only supply systems and USAF 
maintenance personnel should access only maintenance systems. 

Table 3.4. Indicators of Bot Complexity 

Complexity Indicator Description 

Security If a bot is designed to access secure systems, the bot must be given 
credentials or at least prompt the user. This adds complexity to the design and 
coding of the bot, especially if it goes between multiple systems that each 
carry different security criteria and privilege requirements. For example, each 
system may require a CAC or personal identity verification and distinct 
username and password. Alternatively, systems could be designed for 
different job types (e.g., supply versus maintenance), and a bot would need 
clearance from all parties to function.  

Type of connectivity A bot could leverage different types of connectivity, such as local networks, 
servers on a cloud, and internet websites. Each of these could require its own 
connection protocol, adding complexity to programming. 

Number of applications The more applications that a bot uses, the more complicated its workflow will 
become. Some applications require special user credentials, which the bot 
would need to access. 

Number of keystroke 
steps 

Each keystroke needs to be automated. Thus, the more keystrokes exist within 
a process, the more programming is required. However, one of the primary 
purposes of RPA is to reduce user keystrokes. So, although keystrokes 
complicate programming, a reduction in keystrokes could save user time.  

Data structure Retrieving and manipulating data from complex data structures or multiple 
distinct data structures could require complex programming. 
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Complexity Indicator Description 

Systems integration Bots could act as a temporary means of bridging data systems. However, 
where possible, integrating systems rather than using a set of bots could 
provide the greatest efficiency returns. 

SOURCE: Features information from HAF/A4 Logistics Automation, 2021. 
 
When deciding whether automating a process will yield significant ROI, the value of an RPA 

automation can be measured by comparing the cost of implementing and maintaining an automation 
with the cost of continuing to perform the task manually. We augment a framework proposed by 
Gružauskas and Ragavan and propose an ROI that captures efficiency gained through automation, 
Efficiency = EP – NP, where EP is the existing process expense and NP is the new process expense.86 
The existing process expense is 

𝐸𝐸𝐸𝐸 = 	𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵𝑇𝑇	𝑇𝑇𝑡𝑡𝐵𝐵𝑡𝑡𝐵𝐵𝐵𝐵𝑡𝑡𝑇𝑇𝐵𝐵𝑇𝑇𝑡𝑡	𝑣𝑣𝑇𝑇𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣	 × 	𝐷𝐷𝑣𝑣𝑣𝑣𝑡𝑡𝐵𝐵𝐴𝐴𝑣𝑣	𝑝𝑝𝑡𝑡𝑇𝑇𝑡𝑡𝑣𝑣𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝐴𝐴	𝑇𝑇𝐵𝐵𝑣𝑣𝑣𝑣	 × 	𝐷𝐷𝑣𝑣𝑣𝑣𝑡𝑡𝐵𝐵𝐴𝐴𝑣𝑣	𝑤𝑤𝐵𝐵𝐴𝐴𝑣𝑣. 

 It is important that all parameters use the same unit of time (minutes, hours, etc.). The new 
process expense is given by  

𝑁𝑁𝐸𝐸	 = 	𝐶𝐶𝑇𝑇𝐵𝐵𝑇𝑇	𝑇𝑇𝑜𝑜	𝑏𝑏𝑇𝑇𝑇𝑇	𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣𝑇𝑇𝑇𝑇𝑝𝑝𝑣𝑣𝑣𝑣𝑡𝑡𝑇𝑇	 + 	𝐼𝐼𝑣𝑣𝑝𝑝𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑇𝑇𝐵𝐵𝑇𝑇𝐵𝐵𝑇𝑇𝑡𝑡	 + 	𝑀𝑀𝐵𝐵𝐵𝐵𝑡𝑡𝑇𝑇𝑣𝑣𝑡𝑡𝐵𝐵𝑡𝑡𝑡𝑡𝑣𝑣. 

To make EP and NP comparable, the length of time used for the total transaction volume must be 
long enough (at least one year). If E > 0, the automation will add efficiency (e.g., saving money or 
resulting in gained productivity).  

Although this equation captures costs, it is also important to consider other criteria that might be 
more difficult to monetize. For example, it is difficult to monetize the value of refocused time, called 
gained productivity, that permits airmen to accomplish tasks that require deeper thought or judgment 
while an RPA bot handles manual tasks.  

 One of the stated goals for bot development in USAF is to enable more time to be spent on tasks 
that require more thought and judgment. Other metrics focus on the total cost savings from 
increased performance, how often the bot is used, or the value of error reduction.87 Other helpful 
criteria to consider include the following:88  

• Process timing: Automation can be leveraged to optimize a process. For example, an 
automation can be running in the background or during hours when humans are not 
working. 

• Service availability: The percentage of time the service should have been available can be 
compared with the percentage of time it actually was available. 

 
86 Valentas Gružauskas and Diwakaran Ragavan, “Robotic Process Automation for Document Processing: A Case Study of a 
Logistics Service Provider,” Journal of Management, Vol. 36, No. 2, December 2020. 
87 Bart Teodorczuk, “How to Measure RPA Success? A Guide to Robotic Process Automation Metrics,” Flobotics blog, 
December 23, 2021.  
88 “Measuring RPA ROI—How to Do It Right?” Digital Workforce blog, July 1, 2020.  
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• Personnel satisfaction: Automations might improve productivity, which could improve 
morale and reduce staff turnover. 

Once a bot has been implemented, it is important to measure the value being added. Fortunately, 
there are several indicators to inform how well an automation is performing,89 eight of which are 
illustrated in Table 3.5. These indicators are meant to capture the value of how often the RPA is 
being used and the costs of downtime during maintenance. Leadership should develop 
documentation to regularly track these indicators after a bot is deployed.  

Table 3.5. Automation Performance Metrics 

Metric of Automation Performance Description 

Velocity The average time it takes to perform an 
automated process; helps calculate time 
and cost savings 

Utilization How often the automated process is 
performed 

Accuracy Frequency with which the automated 
process is executed with errors 

Break-fix cycles Frequency with which an automated 
process malfunctions and requires 
maintenance 

Break-fix person hours The number of hours spent fixing a bot 

Break root causes The reasons that bots are breaking in the 
first place 

Average automation uptime How often a bot is available for tasking 

Business value lost in downtime Quantification of performance lost 
because of break-fix cycles by subtracting 
the value of downtime from the annual 
expected business value 

SOURCE: Features information from “Measuring RPA ROI—How to Do It Right?” July 1, 
2020. 

Intelligent Automation  
IA is more sophisticated than RPA, adding advanced technologies, such as AI, ML, and natural 

language processing (NLP).90 IA bots are capable of tasks that RPA bots are not, including the 
following: 

• analyzing patterns to inform strategic decisions 

 
89 Bruna Sofia Simoes, “Infographic: 10 Metrics You Should Be Tracking to Drive RPA Success,” Blueprint, webpage, January 
22, 2021.  
90 “What Is Intelligent Automation?” International Business Machines Cloud Education, webpage, undated; Pascal Bornet, “A 
Framework for Explaining the Power of Intelligent Automation,” Wevolver, February 15, 2022. 



  37 

• applying judgments to address uncertainty 
• processing such nonstandardized inputs as varying formats and handwritten documents 
• using NLP to understand logic within written language. 

IA can improve accuracy in repetitive processes that require decisionmaking and reduce business 
costs by freeing up more personnel time for executing processes beyond repetitive tasks.91 
International Business Machines (IBM) promotes a “Supply Chain Intelligence Suite” to help 
businesses add resilience and agility by combining disparate systems, arguing that this will “lead to 
faster problem resolution and more efficient supply chain operations.”92 Current research on IA 
applied to supply chains is mainly focused on such themes as supplier risk management, decision 
models, and network design.93 For example, if a supplier becomes unavailable because of disruptions, 
an IA bot might analyze historical data pertaining to costs, quality, and timeliness to choose the next 
supplier(s) faster than a human could.  

ML has been implemented to enhance demand forecasts by applying data analysis to handle 
uncertainty; to the best of our knowledge, these applications have not used bots.94 For this type of 
application, data must be trusted to reflect reality. Otherwise, the bot could predict a surge in 
demand when none comes to fruition, leaving the user with excess inventory. Alternatively, the bot 
will not predict an actual surge, parts will not be ordered, and weapon systems will be non–mission 
capable. It is important to remember that when it comes to handling uncertainty, there are no 
guarantees that the bot will make the correct decision. Rather, developers must quantify a level of 
confidence in results. 

IA’s initial use might be in helping USAF analysts process unstructured information that comes 
in unstandardized formats or includes handwriting. This incremental step above RPA could give 
USAF a chance to see what AI/ML can accomplish in a constrained environment. Such IA bots 
process large numbers of documents that come in varied forms, applying ML to identify the 
important information to extract and analyze.  

There are challenges to implementing IA. First, IA generally requires sophisticated knowledge to 
implement, including advanced programming skills and a deep understanding of ML and data 
science. Bugs introduced during the programming and training of a model can lead to errors that are 
difficult to detect. In industry, AI bots have been applied to identify the best candidates from 
thousands of resumes; however, unfortunately, poor training data made these bots biased against 
certain types of people.95 Forbes reports that a poorly trained bot “may promote biased hiring because 
of its reliance on unconsciously prejudiced selection patterns like language and demography.”96 

 
91 “What Is Intelligent Automation?” undated.  
92 “What Is Intelligent Automation?” undated. 
93 Farheen Naz, Anil Kumar, Abhijit Majumdar, and Rohit Agrawal, “Is Artificial Intelligence an Enabler of Supply Chain 
Resiliency Post COVID-19? An Exploratory State-of-the-Art Review for Future Research,” Operations Management Research, 
Vol. 15, Nos. 1–2, September 2021.  
94 See, for example, Babai, Tsadiras, and Papadopoulos, 2020; and Amirkolaii et al., 2017. 
95 Jeffrey Dastin, “Amazon Scraps Secret AI Recruiting Tool That Showed Bias Against Women,” Reuters, October 10, 2018.  
96 Nish Parikh, “Understanding Bias in AI-Enabled Hiring,” Forbes, October 14, 2021.  
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Another challenge is one associated with a common use of IA: conversational bots or chatbots 
that assist customers with IT support. These bots apply AI to understand the description of a 
problem from a customer and make judgments regarding the appropriate solution to the problem. If 
a bug exists in the programming or data that an IA bot is trained on, a conversational bot could give 
the wrong answer to a question. This would cause significant problems if the user were a mechanic 
asking for the correct part to use or a pilot asking for destination coordinates. Furthermore, a 
conversational bot might give the correct answer to a different question from the one it was asked. 
For example, if a user asked what type of part goes on an F-16, a bug-prone conversational bot could 
give the correct answer for an F-15 and not realize the error.  

It is also important to be cautious about the decisions that are left to a bot. IA should be used to 
inform strategic decisions but should not be trusted to make these decisions by itself. After all, 
training an AI bot on bad data will teach it to make bad decisions.97 Because of the dangers of putting 
confidence in results that stem from inaccurate data, one application of an automation, be it RPA or 
IA, is to look for inconsistencies in data. This type of application also adds cybersecurity, as malicious 
attacks often seek to alter data. 

A Comprehensive Taxonomy to Characterize Bots 
Before USAF can strategize its bot investments and begin bot development, it is imperative to 

understand and document the primary characteristics of a bot. Although most developers have a 
process for describing a bot prior to its development, a full taxonomy can raise questions for the bot’s 
use that might not have been previously considered. Without a full taxonomy, HAF/A4 might have 
an incomplete picture of the impact a bot will have on systems and other users, which could cause 
conflicts with other systems or could introduce additional risks.98 We propose using the 
comprehensive taxonomy published by Lebeuf et al. (2019), which characterizes a bot according to 
three primary dimensions: environment, intrinsic (how the bot functions), and interaction. Within 
each of these dimensions, numerous attributes describe the key information we need to know about a 
bot, illustrated in Figure 3.1. The full taxonomy is presented in detail in Appendix B. 

 
97 Tammy McClausland, “The Bad Data Problem,” Research-Technology Management, Vol. 64, No. 1, 2021; RAND SMEs, 
guided discussions with the authors, August 2022; Stephen C. Slota, Kenneth R. Fleischmann, Sherri Greenberg, Nitin Verma, 
Brenna Cummings, Lan Li, and Chris Shenefiel, “Good Systems, Bad Data? Interpretations of AI Hype and Failures,” 
Proceedings of the Association for Information Science and Technology, Vol. 58, No. 1, 2020.  
98 For more information on risks associated with bot development, see Chapter 4 of this report.  
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Figure 3.1. Primary Characteristics in a Comprehensive Bot Taxonomy 

 

SOURCE: Adapted from Lebeuf et al., 2019. 

The Environment Dimension 
The environment dimension describes the surroundings in which the bot operates. This refers to 

the machine or server that the bot inhabits, the network(s) that the bot may access, and the data 
systems that the bot manipulates. The environment category designates the bot’s ability to access 
other systems and determines whether certain risks will emerge. For instance, parameters controlling 
type, scope, and closure control where the bot is located (such as a stand-alone machine or platform), 
how large the environment is, and any restrictions placed on the bot’s access privileges. Failure to 
properly constrain a bot’s access to systems presents an enormous risk to security and the integrity of 
data within the bot’s reach. For example, an unconstrained bot may manipulate or delete data that it 
should not. 

Furthermore, the environment category includes descriptions of the other entities that could be 
acting within the same space and how a bot’s actions might change other users’ or bots’ experiences. 
When developing a bot, USAF must consider who will be occupying the same space as the bot. 
Otherwise, a bot could lock out another user by leveraging a document or dataset while another user 
wants access. Alternatively, two bots manipulating the same dataset at the same time could initiate a 
feedback loop in which the bots will eternally respond to each other’s actions, to the detriment of the 
processes they are performing. 

The Intrinsic Dimension 
The intrinsic category describes functional properties of the bot itself, where the bot’s developer 

determines each attribute. This group of parameters comprises the bot’s actions, what a bot knows or 
remembers, where it gets its information, how the information influences its behavior, and whether 
or how it learns from the information. Characteristics of the bot’s knowledge, such as where 
information comes from and whether the bot can remember past events, determine how the bot will 
behave. For instance, a bot’s knowledge could be directly encoded within its programming or 

Bot Parameters

Environment Intrinsic Interaction

• Type
• Scope
• Closure
• Dynamism
• Permanence
• Population
• Diversity

• Knowledge
• Reasoning
• Adaptability
• Goal Orientation
• Anthropomorphism
• Lifecycle

• Access
• Sense
• Act
• Communicate
• Robustness
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retrieved from an external file. If it comes from an external file, it is vital to monitor who has access to 
the file and to document when and how the file changes. Otherwise, the bot might behave in an 
unexpected manner and users will either notice and be unable to explain results or, worse, not notice 
and have confidence in faulty results. 

The intrinsic category also frames the outcome that a bot is working toward. One intrinsic 
outcome is goal orientation, which is characterized by many attributes, including complexity, 
attainability, and delegation, where delegation refers to whether the bot has authority to act on behalf 
of or even pretend to be the user. Current RPA bots within USAF act as though they are the user, 
leveraging the user’s access credentials and CAC. This makes it impossible for a distinction to be 
made between the actions of the user and the bot. In cases in which a bot behaves unexpectedly and 
damages data or systems, it will be difficult to identify whether it was the user or bot causing the 
damage. The RPA Center of Excellence (COE) has requested funds for a centralized cloud that 
would track user and bot actions separately by giving the bot separate access credentials from those of 
the user.  

The intrinsic category also includes reasoning, which determines how a bot responds to stimuli, 
the visibility of its actions, and whether a bot’s actions require permission from a user. This collection 
of parameters is crucial to consider before bot development because they control the extent to which 
users can observe a bot’s behavior and actively prevent a bot from performing certain actions. 
Considering standard guidance regarding actions a bot is able to take, how it documents its actions, 
and which bot actions require user approval will be beneficial. 

Adaptability controls how a bot learns from its environment, restricting how the bot may adapt 
its behavior, the source that controls how a bot adapts, and whether there is any guidance given the 
bot’s adaptation. This category is only relevant to IA bots that leverage AI or ML. There are no plans 
to develop IA bots within the A4 community. 

Finally, the intrinsic category also includes anthropomorphic qualities in case the bot is given a 
visual representation or personality. For example, conversational bots that leverage AI to interact 
with users can be given a name, age, or ethnicity to personify them. This generally improves the user 
experience by allowing the bot to emulate human interactions. These types of bots are typically 
deployed for IT support and customer service functions.  

The Interaction Dimension 
The third and final dimension is interaction, which describes the rules governing how a bot 

engages with different entities in its environment. Specifically, the interaction category dictates the 
manner in which a user communicates with others. This includes how the bot inputs or outputs 
information and the language in which it communicates. Furthermore, the interaction category 
includes the ability of the bot to prevent and correct errors that it identifies in its inputs. This is 
critically important to bot development. After all, a bot’s inputs could be prone to human error. If a 
bot blindly acts on the erroneous input, there could be significant consequences. For example, 
suppose a user leverages a bot to order parts but accidentally orders 400 units instead of 40. A bot 
with error prevention capabilities would notice that the order greatly exceeds what is typical and 
would ask the user if they are sure they want that many. 



  41 

Using this taxonomy, USAF can more clearly define the needed dimensions of bots prior to their 
development. Furthermore, USAF should use the taxonomy to set standard guidance on bot 
characteristics and the environments that they can inhabit. Without applying a taxonomy, USAF 
could run the risk of relying on responsive rulemaking that identifies bot issues only after a problem 
occurs. This is of particular concern for the status of bot development in USAF because of the 
decentralized nature of bot development. The status of bot development in USAF and in commercial 
industry is discussed in more detail in the next section.  

Current Status of Bot Development 
USAF airmen have been burdened by tasks that are time intensive, are repetitive, and require 

high levels of consistency. In response to these challenges, USAF has considered opportunities to 
introduce bots to USAF processes and free airmen’s time for other tasks. Faced with similar 
challenges, commercial industries have developed bot technologies to improve efficiency and increase 
consistency with varying levels of success. In this section, we discuss the initial steps taken by USAF 
to introduce bots, including the creation of the RPA COE and the training of citizen airmen 
developers, a term used by USAF to describe its targeted community of bot developers.99 We also 
present the status of bot development as a service, including companies with which USAF has some 
existing partnerships. Finally, we describe the experiences of bot development in supply chain and 
logistics companies. These companies, although largely in the early stages of bot development, 
provide a road map of possible avenues for future bot development and critical considerations for bot 
investments. 

Current Status of Bots in USAF 
RPA bots are currently being developed in decentralized pockets of USAF. As a result, an effort 

is underway to centralize bot development and storage across the enterprise. At the core of this 
centralization effort is the creation of the RPA COE, which builds bots for stakeholders across 
USAF. The RPA COE has embarked on a partnership with UiPath, an RPA service provider and 
leader in bot development. This partnership includes the purchase of 50,000 licenses that allow users 
to develop their own bots for custom tasks with limited coding knowledge required. UiPath and 
other companies that offer RPA bot development services are described in more detail later in this 
chapter. 

The development of the COE is well underway and has been focused on training airmen 
throughout USAF to become citizen airmen developers or bot developers who create simple bot 
applications for their personal use. Since its inception, the COE has trained more than 1,500 citizen 
airmen developers across 22 USAF functional areas at 90 installations.100 The primary vehicle for this 

 
99 USAF’s bot development outreach initiative is predicated on the notion that the best ideas for the application of bots will 
come from airmen across USAF (citizen airmen developers), who perform the repetitive, labor-intensive tasks that USAF seeks 
to automate through the use of bots. 
100 RPA Center of Excellence, “RPA Center of Excellence (COE) Accomplishments,” PowerPoint presentation, March 2022.  
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expansion was a series of eight RPA roadshows and four RPA Digital Wingman Challenges.101 
These challenges, developed in partnership with UiPath, have trained more than 1,000 citizen 
airmen developers by providing initial bot development training followed by a competition in which 
airmen submit bot development ideas to a panel of judges.102 Citizen airmen developers in USAF 
have designed 140 automations across 13 functional areas, with more than 50 bots in various stages 
of development.103 Across USAF, the Secretary of the Air Force Financial Management & 
Comptroller (SAF/FM); Headquarters U.S. Air Force Deputy Chief of Staff for Manpower, 
Personnel and Services (HAF/A1); and HAF/A4 have led USAF with the highest number of 
developed automations by citizen airmen developers.104  

To facilitate its citizen airmen developers, the COE is using its partnership with UiPath with the 
goal of making bot development tools available for every airman. UiPath RPA software is available 
through cloud access using CloudOne or by installing the desktop application.105 CloudOne, the 
cloud computing system used by USAF to provide IT capabilities, hosts UiPath RPA software in an 
effort to centralize management and enable enterprise-wide access.106 Furthermore, UiPath desktop 
software is available for installation to allow for bot development on local machines. Currently, 
around 50 RPA bots have been developed using UiPath, with varying success.107 These bots are 
primarily deployed for personnel and finance applications.  

Despite the COE’s progress in partnering with UiPath and training citizen airmen developers, 
our discussions with USAF experts revealed that airmen have struggled to develop bots without 
major assistance from professional developers.108 The COE also reports that a lack of funding has 
made scale-up efforts difficult, but, as of 2022, COE had submitted a request for funding to ensure 
that the center is capable of developing, scaling, and sustaining automations across USAF.109 

Meanwhile, the A4 community is endeavoring to establish an organic RPA capability in the 
SCMW. This effort was separate from the RPA COE, but HAF/A4 has brought RPA COE “into 
the fold.”110 Although this program was still in its infancy at the time of writing, HAF/A4 was 
working toward developing bots to automate five specific processes, described in Table 3.6. SAF/FM 
uses a bot development life cycle framework that could be highly valuable for HAF/A4 to leverage 
when developing initial use cases.111 This framework proceeds in the following seven stages:  

 
101 RPA Center of Excellence, 2022. 
102 Kayla Prather, “AFMC Robotic Process Automation Roadshow Drives Innovation,” Air Force Materiel Command, 
December 15, 2021. 
103 RPA Center of Excellence, 2022. 
104 The list of bots we consulted was provided by RPA COE. 
105 RPA COE personnel, discussion with the authors, March 2022. 
106 Cloud One, homepage, U.S. Department of Defense, undated.  
107 The list of bots we consulted was provided by RPA COE. 
108 USAF 448th SCMW/Individual Mobilization Assistant, guided discussions with authors, May 2022. 
109 USAF AFLCMC/Business Enterprise Systems Directorate (GB)-Command, Control, Communications, Intelligence and 
Networks Directorate (HN), guided discussions with authors, March 2022.  
110 USAF Air Force Reserve Command 927th Wing, guided discussions with authors, July 2022. 
111 Air Force Financial Systems Operations, AFFSO Automation Development Lifecycle, PowerPoint presentation, February 12, 
2020, Not available to the general public.  
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• intake: identify potential use cases  
• prioritize: determine order of implementation for use cases according to strategic priorities 
• design: capture the current-state process and design the automated target state 
• develop: develop the bot based on the workflow design and requirements 
• test: test to ensure consistency in expected outputs based on the requirements 
• release: migrate code from development environments to a production state 
• maintain: run, evaluate, and modify implemented automations to mitigate any risks that 

emerge during operation. 

Table 3.6. Ongoing HAF/Logistics Directorate Bot Development Efforts 

Process Current Activities RPA Use Case 

CEMS—IMDS/G081 reconciliation Manually reconcile APSR and MIS 
to validate the current engine 
status 

Automate APSR and MIS 
reconciliations on a more routine 
frequency to identify variances 
requiring remediation 

Stock control failed status Manually reconcile BOSS alerted 
requisitions via their respective 
SoS to validate requisition and 
update order status 

Automate BOSS alerted requisition 
reconciliation between ILS-S and SoS 
to validate requisition and update 
order and shipping status 

437th SCOS ILS-S reports generation Enterprise-wide process used by 
base users to request the 
scheduling of reports through 
437th SCOS 

Automate process to receive, 
validate, verify, and schedule user 
reports  

EMB download process Manually download, convert, and 
upload engine diagnostic data 
into maintenance systems and 
CEMS 

Automate multiple data formatting 
steps and data upload process 
logging electronic records 

435th SCOS/437th SCOS MRSP 
transfer  

Cross-organizational process 
facilitating movement of 
accountable MRSP records 

Automate process to receive, 
validate, verify, and execute 
movement of records  

SOURCE: Features information from HAF/A4 Logistics Automation, 2021. 
NOTE: CEMS = comprehensive engine management system; IMDS = integrated maintenance data system; G081 = a 
numbered government system for maintenance information for USAF airlift and aerial refueling weapon systems; APSR 
= accountable property system of record; MIS = management information system; BOSS = base operating stock 
specialist; ILS-S = integrated logistics system supply; SoS = source of supply; SCOS = supply chain operations 
squadron; EMB = engine management board; MRSP = mobility readiness spares package. 

 
Even with the help of expert developers, bot development in USAF faces significant challenges, 

including incompatible systems and inefficient processes. Interviews with USAF experts revealed that 
at the supply wing alone, there are at least “three different platforms that do not communicate with 
each other,” which translates to difficulties in centrally processing and sharing data coming from 
these platforms. Furthermore, replacing inefficient processes with RPA can magnify bottlenecks 
rather than resolve their underlying issues. These shortfalls are discussed in more detail later in this 
chapter.  
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Although RPA development in USAF is still in its infancy, IA bots have received even less 
attention. In our limited research, we became familiar with one IA bot prototyped by the Air Force 
Research Laboratory (AFRL), perhaps unsurprisingly because AFRL is mandated to be at the 
cutting edge of USAF technology development. AFRL prototyped a conversational bot through a 
contract opportunity called Multi-Source Exploitation Assistant for the Digital Enterprise.112 This is 
the only actual USAF IA bot that we learned about, though there are likely others that have been 
tested. The objective of this AFRL project was to leverage AI/ML to create a bot that converses with 
the user as an assistant, answering questions or guiding the user to resources. An example of what the 
prototype bot can do is autonomously answer questions about commercial air traffic.  

The overarching concept of IA bots holds significant promise for many applications beyond the 
scope of this particular AFRL effort. For instance, an IA bot could provide pilots with real-time plane 
diagnostics through a conversational assistant. Another application could be enabling maintenance 
personnel to ask questions about the correct type of parts to use and their availability. In general, IA 
bots facilitate improved content management where they can easily be leveraged to query reference 
material faster than a human. The extent of the promise of IA bots to USAF is likely very large, but 
will only be known through real-world projects, testing, and retrospective analyses. Improvement of 
data quality and migration of data to USAF’s Basing and Logistics Analytics Data Environment 
(BLADE) might introduce new opportunities to leverage IA bots to inform strategic supply chain 
management decisions. 

Although USAF is in earlier stages of RPA and IA bot development, commercial industry has 
developed these automations for diverse applications, from chatbots for customer service interactions 
to web crawlers that are the basis of search engines used to navigate the internet. In the next section, 
we discuss bots developed in two portions of commercial industry—RPAaaS and bot development 
by supply chains and logistics companies—and identify lessons from these experiences applied to 
USAF.  

Informing USAF Bot Development with Experiences from Commercial 
Industry 

Commercial industries were some of the earliest adopters of software bots to reduce personnel 
hours and achieve tasks beyond human capabilities. These software bots accomplish a wide variety of 
tasks; web crawlers serve as the backbone of online search engines and conversational AI, which 
provides services for millions in the form of Siri, Alexa, and Google Assistant. As USAF develops its 
software bots, commercial enterprise can provide useful lessons for valuation of bots, the application 
of software bots, and the future of bot capabilities.  

In this section, we focus on two types of commercial bots: bots created and sold as a service (such 
as RPAaaS) and bots created by firms for internal use. Although bots are used for a variety of 
business aims, we focus our attention on supply chain and logistics commercial bot applications to 
provide insight on the A4 community’s opportunities for applying bots to prevent supply chain 

 
112 “Multi-Source Exploitation Assistant for the Digital Enterprise (MEADE),” webpage, SAM.gov, last updated September 
30, 2022. 
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degradation. From these commercial bots, we identify opportunities and challenges for implementing 
software bots and draw lessons for USAF. 

Bot Value Proposition in Commercial Industry 
With increased focus on efficiency and accuracy in complex global supply chains, companies have 

turned to software bots to reduce time spent on tedious and repetitive tasks while increasing the 
accuracy with which they are executed. RPA can automate these tasks without requiring a system 
change by repeating manual tasks at a higher speed. Without changing the system, RPA bots can 
continue to follow the rules and compliance created by the legacy IT system while reducing the cost 
to the organization by removing manual tasks that reduce productivity.113  

These benefits are not without challenges. If a process is inherently flawed, accelerating that 
process could have the opposite effect by increasing the magnitude of errors. These shortfalls and 
their applicability to USAF are described in more detail later in this chapter. 

RPAaaS 
As described earlier in this chapter, the COE has contracted with UiPath, an RPAaaS provider 

that provides low-to-no-code environments that can be accessed with limited coding knowledge. 
Gartner, an IT consulting firm, identifies UiPath as a leader in RPAaaS for its strong “ability to 
execute” and “completeness of vision.”114 Gartner is a for-profit company that conducts technology 
market research. As part of this research, Gartner produces proprietary rankings of RPAaaS 
companies in its Magic Quadrant report, which ranks companies on two dimensions: ability to 
execute and completeness of vision.  

The Gartner evaluation should be considered with some caution. Although the Gartner market 
research report was one of the only evaluations we identified, there is limited transparency for its 
methodology. For example, the publicly available methodology documents accessed through its 
website (without submitting a request or logging in) define terms used in the Magic Quadrant but do 
not include information on data collection, quantitative evaluation, or weighting that can be used to 
determine its objectivity.115 Therefore, we present the Magic Quadrant for consideration of 
dimensions for evaluating RPAaaS and commonly highlighted RPA features but do not present 
Gartner’s findings as a definitive ranking of these companies.  

In its third annual Magic Quadrant report, Gartner classified and ranked 18 RPAaaS providers 
across the two dimensions. In addition to UiPath, the upper right quadrant of Figure 3.2 
(maximizing both dimensions) includes three more top companies: Automation Anywhere, Blue 
Prism, and Microsoft.116  

 
113 Swapnil Sirdeshmukh, Yashdeep Saran, and Ankit Tondon, “Faster Decision-Making with RPA in High-Tech Supply 
Chains,” Infosys, February 2, 2019.  
114 “2022 Gartner Magic Quadrant for Robotic Process Automation,” webpage, UiPath, undated.  
115 We reviewed Gartner’s methodology in documents on its webpage without using a login. See “Positioning Technology 
Players Within a Specific Market,” webpage, Gartner, undated; Gartner, “Gartner Magic Quadrant and Critical Capabilities: 
Methodologies Evolution,” September 10, 2019; and “Ombuds: Guiding Principles,” webpage, Gartner, undated. Further 
supporting materials might be accessible through Gartner’s portal, but this information might be proprietary. 
116 “2022 Gartner Magic Quadrant for Robotic Process Automation,” undated.  
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Figure 3.2. Gartner’s 2021 Magic Quadrant

SOURCE: Reproduced from “2022 Gartner Magic Quadrant for Robotic Process Automation,” undated.
NOTE: Gartner surveyed business technologists to categorize companies across two dimensions: “ability to 
execute” and “completeness of vision.” For more information, see “Positioning Technology Players Within a 
Specific Market,” undated. These data have since been updated.

Gartner classifies RPAaaS leaders as companies that have reliable performance with a strong 
consumer base that enables them to lead the RPAaaS market toward innovation.117 Each of the four 
leaders has some development of a low-code environment, which allows users with little coding 
experience to access a user interface to create the bot. The four leaders consistently offer automation 
for digital processes, and some allow task capture and mining, as well as ML and analytics. Leaders in 
RPAaaS are developing AI and ML tools to enhance repetitive processes with real-time 
decisionmaking. Although these tools might be useful for the A4 community’s adoption, they require 
high-fidelity data to produce meaningful and accurate results. RPAaaS companies also plan to 
expand low- and no-code environments to make bot development more accessible to those without 
programming experience. Rather than using programming languages to have the bot conduct a 
specific task, the end user can use prebuilt templates to create a task flow.118 A key takeaway for the 

117 “2022 Gartner Magic Quadrant for Robotic Process Automation,” undated.
118 Abhishek Shanbhag, “Why the Future of Chatbots Is Low Code,” BotCore by Acuvate blog, January 15, 2021.
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A4 community is that low- and no-code environments are an opportunity to use bot development 
more widely despite the limited programming expertise of airmen.119  

Finally, bot development companies have worked to improve optical character recognition 
technologies. Optical character recognition will allow bots to take paper inputs (i.e., forms or printed 
materials) and incorporate them into process flows. In the current state, a person might need to input 
information manually from a physical source and incorporate it into digital resources. This process is 
prevalent in USAF because of the use of older data systems that are often disconnected from each 
other. Incorporating optical character recognition could allow the A4 community to bridge gaps 
between systems and reduce time spent on data entry.  

Bots in the Commercial Supply Chain  
Companies that provide RPAaaS often develop bot applications for customers with limited 

technology capabilities. Beyond these service providers, bots are being developed by logistics and 
supply chain companies for their internal use. Although these companies have strong incentives to 
implement automation, they often face challenges similar to those faced by USAF.  

The rate of bot adoption by the logistics sector has been slower than in such other sectors as 
mining and warehousing.120 In the logistics sector, container ports could have issues materializing the 
benefits of automation, including limited returns for operating expenses or failing to meet increases in 
productivity within expected time frames.121 These challenges are due, in part, to issues filling 
specialized positions necessary to create and manage automation at ports and the additional training 
time required.122 Furthermore, ports do not often have high-quality data that are structured in a 
transparent data pool that would enable sophisticated automation and AI technology.123 Despite 
these challenges, Supply Chain Quarterly reported that it expected ports to pursue automation and AI 
because of the benefits to consistency, productivity, compliance, and safety.124  

Although RPAaaS providers develop software bots for external use, some commercial supply 
chain and logistics companies develop software bots to resolve internal issues with production and 
workflow. These firms cope with similar supply chain challenges to USAF, including aging systems 
and the need for reliable decisionmaking. For example, like USAF, the commercial transportation 
and logistics industry uses manual documentation for supply chain management. Manually extracting 
data is estimated to result in an extraction error rate of up to 50 percent.125 As outlined earlier in this 
section, the valuation of bot development should include the estimated savings from the expected 
reduction in errors.  

 
119 USAF AFLCMC/GB-HN, guided discussions with authors, March 2022. 
120 Fox Chu, Sven Gailus, Lisa Liu, and Liumin Ni, “The Future of Automated Ports,” McKinsey & Company, December 4, 
2018.  
121 Chu et al., 2018.  
122 Chu et al., 2018.  
123 Chu et al., 2018.   
124 “Maritime Port Operators See Great Promise in Artificial Intelligence,” Supply Chain Quarterly, September 20, 2019.  
125 Gružauskas and Ragavan, 2020.  
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Using RPAaaS companies for bot development has allowed USAF to begin developing them 
without requiring a significant technology-trained workforce. However, using the bot license 
framework limits bot capabilities to individual initiatives, which might result in decentralized 
development by citizen airmen. This could limit USAF to creating bots for relatively simple tasks 
based on the problem sets faced by the airmen who obtain licenses. Orchestrating bot development or 
investing in bot development capabilities could enable the creation of bots that affect larger-scale 
business processes.  

Using RPAaaS for bot development could also result in service lock whereby USAF needs to 
continue paying vendors to maintain and manage the automation. Decentralized bot development in 
USAF has resulted in the use of multiple automation platforms that do not communicate or work 
together.126 USAF will need to settle on an approach: either use RPAaaS bots as a temporary 
measure and invest in its own bot capability or create business process changes that remove the need 
for the bot in the long term. 

Supply chain and logistics companies that implemented their own bot development capability can 
face delays on ROI. The evidence suggests that these challenges were caused by limited data quality 
and understaffing of specialized technical positions.127 We discuss these issues and their applicability 
for USAF in the next section of this chapter.  

Limitations and Potential Risks for Bot Development in USAF  
Bot development could allow USAF to make processes more efficient and free airmen’s time for 

other tasks. But these benefits are not without challenges. In this section, we highlight the general 
limitations of RPA and situate these limitations within USAF operations. Some limitations to RPA 
need to be considered before developing a bot. First, RPA bots, as defined earlier in this chapter, 
require well-structured inputs and cannot read inputs that come in nonstandardized formats, 
handwritten documents, graphs, charts, or images.128 Second, a lack of cognitive capability via AI 
prohibits analysis of trends or judgment calls to be made by the bot. Although IA overcomes some of 
these limitations, it also introduces new risks. We discuss these risks and other possible limitations of 
IA bots later in this section. 

As discussed previously, RPA is often used to expedite processes within a broader system. But, in 
doing so, RPA can introduce new bottlenecks or magnify inefficiencies of a poorly designed system. 
Although not addressed in the bot taxonomy, if a system consists of several sequential processes, 
expediting one process could simply create an unwieldy backlog at the next step. Principles of 
continuous improvement tell us that a stable system can function at no greater speed than the speed 
of its bottlenecked process. Expediting any process before the bottleneck will only increase the 
backlog where the process is congested, and expediting processes after the bottleneck will only create 

 
126 RPA COE staff, guided discussions with authors, March 2022. Licenses currently in use by USAF include UiPath, 
Automation Anywhere, and BluePrism.  
127 Chu et al., 2018. 
128 Abhimanyu V, “What Are the Limitations of RPA?” Tutorialspoint, December 8, 2022. 
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excess unused capacity. The system will only improve if it is the bottleneck process itself that is 
expedited, potentially through automation. 

Deploying RPA bots without proper testing incurs the risk of making errors much faster and on 
a larger scale than humanly possible, irreparably modifying or deleting large amounts of critical data. 
This risk is seen in a particular combination of features of the taxonomy—specifically, the 
predictability, agency, and visibility features of the intrinsic category that control the freedom given to 
a bot and the ability for others to track a bot’s actions. Within the interaction category, the access and 
act features determine the bot’s ability to make changes to specific systems, and robustness features 
control the bot’s ability to prevent and correct errors that are detected in inputs before acting.  

An organization could also suffer when the number of bots in use becomes unwieldy.129 It can 
become difficult to pinpoint which actions were performed by which bot and predict such outcomes 
of bot interaction as when multiple bots manipulate the same data. This potential risk should be 
identified in the population and diversity criteria in the environment category of the taxonomy.  

Bots increase the complexity of any system through additional software requirements, where 
different bot development software carries technology specifications that might not be compatible 
with certain data systems or work with other bot software. It is a good practice to choose one bot 
software that works on all critical systems for the full enterprise. The type of software used to develop 
the bots is captured in the type, scope, and closure features of the environment category in the bot 
taxonomy.  

As some airmen duties are replaced by bots, it is important to develop plans defining changes in 
the scope of jobs, how time will be repurposed to other tasks, how management might change, and 
how metrics of job performance might change. Some individuals might fear that they are being 
replaced by a bot. Without buy-in, HAF and even some airmen might resist an automation 
initiative.130 Furthermore, any changes to processes need to be approved by all process owners and 
supervisors so that everyone is aware of changes to processes and the broader system. 

In addition to the process risks mentioned above, bots present significant cybersecurity risk when 
not implemented or managed carefully. Bots are given system access credentials and the ability to 
move, modify, and delete data at high speeds. Malicious or negligent actions can also be difficult to 
track because it is often difficult to separate the actions of a bot from those of a user.  

Poorly managed bots can negatively impact the confidentiality, integrity or 
availability of the information stored and processed by an organization. This 
applies not only to the infrastructure components that support the RPA 
environment—servers, databases, virtual machines, and orchestration 
technology—but also to the passwords and permissions of the accounts that 
bots use to interact with applications and systems.131 

Chapter 4 discusses cybersecurity issues related to integrity-based attacks with special emphasis 
on bots. It presents an approach for identifying and mitigating these types of cybersecurity risks. 

 
129 “Maritime Port Operators See Great Promise in Artificial Intelligence,” 2019.  
130 Tony Abel and Ben Franjesevic, “Who Is Watching the Bots? Part 2: Operational Challenges (and Solutions),” Protiviti, 
June 11, 2019.   
131 Abel and Franjesevic, 2019.   
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Building and Deploying Robotic Process Automation Within 
USAF 

Because RPA development efforts in USAF have been largely stovepiped, there have been 
numerous instances of rogue operators building and deploying bots without getting approval to do so 
and without having proper bot oversight. This poses an enormous risk to the integrity and security of 
critical systems. Because these bots live on local machines, supervisors often cannot differentiate the 
actions of a bot from those of the user. Indicators of bot actions include different rates and timing of 
transactions (bots can run continuously and all day). To centralize management of bot operations, 
the RPA COE is working toward hosting bots centrally on CloudOne.132 This repository will enable 
better collaboration among developers and better access to airmen who wish to leverage existing 
automations. There are many advantages to a centralized approach. For example, to better 
differentiate bot and human activity within a user’s account, the COE wants to add distinct human 
and bot tokens to CloudOne to monitor bots and human actions separately. (The COE is waiting on 
$400,000 in funding to implement this modification.) 

As mentioned earlier, RPA development requires specialized technical expertise that is not 
developed within USAF. For example, during interviews, we were told that, “Not a single bot was 
built by an airman that could function. From looking at over 100 bots, the only bots that have made 
it to production were rebuilt by professionals.”133 In a news release for the 2019 Air Force Science 
and Technology Strategy, the science and engineering division highlighted that fill rates for USAF 
positions requiring advanced science, technology, engineering, and mathematics (STEM) degrees 
were low, often around 50 percent.134 A common suggestion from experts in USAF was that USAF 
should focus on recruiting airmen with more knowledge of technology and mathematics.135 They 
described the ideal prerequisite training for future bot developers as needing to include operations 
research, data science, computer science, and electrical engineering: “Another goal is to build the skills 
of the airmen for the 21st century. We have massive data systems but not the analyst culture to use 
it.”136  

Finally, there are concerns regarding the ability to scale up bot development and deployment, as 
no standardized guidance exists on how to leverage massively scaled services. 

 Proposed Bot Applications for the USAF A4 Community 
In the preceding sections of this chapter, we presented ways to define a bot, ways to characterize a 

bot, and general use cases for both RPA and IA bots. In this section, we suggest four categories of 

 
132 USAF AFLCMC/GB-HN, guided discussions with authors, March 2022. 
133 USAF AFLCMC/GB-HN, guided discussions with authors, March 2022. 
134 Amanda Miller, “Half of Air Force Advanced STEM Billets Go Unfilled or Require Waivers,” Air Force Magazine, August 
21, 2022.  
135 RAND SMEs, guided discussions with authors, August 2022; Miller, 2022. 
136 USAF AFLCMC/GB-HN, guided discussions with authors, March 2022. 
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bots, listed below, that might have use for the A4 community. We deductively developed the 
following four categories, synthesizing what we learned from our research:  

• bots that expedite high-volume processes 
• bots that execute new processes 
• bots that link disparate data systems 
• bots that facilitate robust analyses. 

We also suggest a variety of possible applications that we believe would be useful to the A4 
community that correspond to these four categories. We compiled these opportunities for bots 
through guided discussions with RAND and USAF SMEs. These potential bots are listed in Table 
3.7. We then describe a demand forecasting–related bot as an illustrative use case. 

Table 3.7. Potential Robotic Process Automation Applications for USAF Implementation 

Application Description 

Expedite high-volume processes 

Submit work orders Automatically submit work orders using a bot linked to an 
Electronic Technical Manual (ETM). The user selects a part from 
an ETM and the system automatically submits requisition and 
updates statuses on maintenance systems. 

Generate regular 
briefings for different 
levels of command 

One bot could use one set of information to generate multiple 
briefings for different levels of command by varying the resolution 
of information presented. For example, one tactical briefing for 
maintainers might present part availability information. A separate 
briefing for commanders could be a strategic view of systemic 
issues. Both briefings could be constructed by a bot using the 
same data. 

Generate 
management reports 

A bot could create management reports that show segmentation 
of mission impaired capability awaiting parts (MICAP) response 
times, including such segments as (1) MICAP verification, (2) 
sourcing time, (3) Pull/Pack/Ship, (4) transportation time, (5) base 
processing time, and (6) receipt by maintenance. 

Execute new processes 

Maintain 
comprehensive 
status updates 

Report open work orders, status on parts, and equipment status 
reports throughout supply chain. Requires getting data from other 
information systems in DLA to find status of requisition outside 
USAF. 

Build empirical bill of 
materials 

Create reference material by linking maintenance actions (by 
serial number, work orders, etc.) to understand what parts are 
needed to sustain and maintain equipment. A bot could also 
identify superfluous parts in the system that do not belong in the 
bill of materials for any weapon system. 

Track the demand of 
parts over time 

Dynamically monitor part failure rates. Identify parts where failure 
rates change suddenly. Link back to vender or maintenance 
systems to identify root causes. 
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Application Description 

Evaluate the health 
of the supply chain 

Detect where queues are building on arcs or nodes within 
distribution pipeline. Gather information on status of shipments to 
figure out which nodes or arcs are causing problems. 

Identify 
nontraditional 
suppliers 

When a program office is going through a nontraditional supplier, 
a bot might help evaluate the best available alternatives (e.g. 
using eBay because a part is not available from the traditional 
supplier). 

Catch errors A bot could monitor a user’s inputs for potential mistakes and 
prompt the user to correct them (e.g., “Are you sure you meant to 
order this part” or “you only entered 7 digits; please correct”). 

Ensure data integrity Bots that can cross-reference other systems to perform a data 
integrity check (e.g., MICAP requisitions will show closed in 
D035A but open in ILS-S and accrue excessive MICAP hours). 

Link disparate data systems 

Clean and 
consolidate data 
within a data lake 

Bots can perform cleansing on data flowing to the data lake so 
that everyone can use the same clean data source. All 
information systems send data into data lake with development 
environment (includes Python, R, structured query language) to 
link data across systems (R is a programming language commonly 
used for statistical analysis and data visualization). 

Connect DLA and 
USAF supply 
systems 

Examine DLA’s and USAF’s systems for all of the low-demand, 
high-cost parts to document inventory levels. See how many 
planes are waiting on a single part.  

Facilitate robust analyses 

Collect additional 
data to assess 
supply chain risk 

Scrape information provided by suppliers about specific 
components received for each aircraft. Compile worksheet to link 
part to part and connect to public finance datasets to evaluate 
risks. Have information on all parts coming in from various 
sources. 

SOURCE: Features information from RAND SMEs, discussions with authors, August 2022. 
NOTE: These processes are described as possible bot applications but should be fully evaluated 
to ensure that the potential benefits outweigh introduced risks. We discuss these trade-offs in 
more detail in Chapter 4.  

Proposed Use Case  
As discussed in Chapter 2, a prerequisite for improved causal demand forecasting is better 

integration of part demand, usage, and maintenance data. We chose this example for several reasons. 
First, the datasets are not linked, making it difficult for USAF personnel to get a holistic view of parts 
failures, actions that occur within the supply functional community because of a part failure, and 
actions taken within the maintenance functional community that could provide additional insights 
about the cause of the failure. Second, there are pockets of personnel within USAF that have 
manually linked and cleansed the data for the purposes of doing the type of analysis we mention. 
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Third, the concept for the bot is not one that the A4 community might think of given its functionally 
stovepiped approach.  

Although research has not conclusively shown that linking these datasets can yield better 
forecasting, such integrated data are required to investigate potential benefits. In addition to demand 
forecasting, linking supply and maintenance data might yield other benefits that will be discussed 
later. Given the potential benefits of linking supply and maintenance data, in this section we present a 
theoretical bot that can link data between the supply and maintenance systems.  

The information resides on three individual systems: one for maintenance activities, one to 
correlate part numbers, and one for supply activities. There is no easy method to bridge these data 
sources. However, it is possible to design a bot to integrate the three datasets to enable more robust 
analysis to drive supply chain operations and inventory decisions (shown in Figure 3.3). 

The bot would function in the following three primary steps:  

1. The user gathers the following inputs from IMDS: 

- tail number of aircraft 
- job control number (JCN) 
- work unit code (WUC) 
- malfunction codes 
- type maintenance code 
- action taken code 
- total flying hours. 

2. Leveraging the tail number of the aircraft and the WUC, the bot queries the original 
equipment manufacturer (OEM) part number from the illustrated parts breakdown (IPB). 

3. Leveraging the OEM part number, the bot queries the national item identification number or 
the national stock number (NSN) information from ILS-S. 

Figure 3.3. Proposed Use-Case Automation 

 

 
NOTE: Total flying hours in IMDS are at the time of failure.  
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The output would be a merged dataset that captures maintenance and supply system data, which 
is placed in a data repository and could facilitate more robust analyses. The use case we propose could 
have a variety of benefits, elaborated on in the following sections. (Note that we do not explicitly 
demonstrate these benefits.137) First, associating the JCN with a WUC and an NSN could allow for a 
more nuanced analysis of what is driving aircraft downtime because it could account for additional 
variables. For specific parts and weapon systems, noting the calendar date and measuring flying hours 
between each replacement and the total flying hours at failure could provide data to validate 
distribution of failures and to understand implications of failures over time.  

Second, it could better inform repair decisions. Repair decisions are currently made based on cost 
of repair at a depot, after pulling the part, testing it, and sending it off to arrive at a decision on the 
total cost of repair. However, this decision can only be made with data systems that link man-hour 
costs (IMDS) with the activities that led to requisition from the supply depot, the part being sent 
back, and the cost of repair at the depot. Furthermore, if the elapsed time between replacement is 
tracked for each new system at the tail number level, these early failures can be used to predict future 
performance more accurately than if engineering analysis is used to predict future performance. In 
new aircraft and modifications, it can be difficult to determine the total population of operating 
systems, which complicates traditional methods to calculate flying hours between failure. Measuring 
flying hours between replacement for each failure is one method to make early predictions for system 
performance.138 

Third, understanding maintenance man-hours (MMH) required to first troubleshoot and then 
remove and replace a bad component could provide insights into training shortfalls or deficiencies. 
Moreover, component costs coupled with MMH costs and aircraft downtime could provide insights 
into ways to improve aircraft availability. Finally, identifying the lowest replacement level could 
reduce DLR replacements for major systems when subcomponents can be replaced. In Chapter 4, we 
apply a cyber risk framework to identify specific cyber risks.  

USAF is conducting three related but distinct ongoing automation efforts. The first is a Part Bot 
that is being developed to procure parts.139 The user inputs an OEM part number, and the Part Bot 
looks up the associated NSN and submits a requisition. This bot is in the beta testing phase before 
full deployment.  

Although both the Part Bot and our proposed use case query an NSN number using an OEM 
part number, there are two differences between the Part Bot and the use case proposed here. First, 
the Part Bot is intended to order parts, while the use case is intended to facilitate robust analyses and 
a better understanding of linkages between maintenance and supply. Second, our use case adds the 
bridge from IMDS to IPB, automating the querying of the OEM part number, which the Part Bot 

 
137 Chapter 2 expands on the difficulty of doing this type of analysis today. 
138 For example, the Duane method uses a log/log plot of accumulated flying hours versus failures to predict flying hours 
between failures. Typically used in test and evaluation, it can also be used to predict in-service mean time between failures (J. T. 
Duane, “Learning Curve Approach to Reliability Monitoring,” Institute of Electrical and Electronic Engineers Transactions on 
Aerospace, Vol. 2, No. 2, April 1964).  
139 Douglas Sangster and Benjamin Young, “PartBot (for Maintainers, by Maintainers),” PowerPoint presentation, 35th 
Maintenance Group, undated.  
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assumes the user will do manually. For our use case, the user inputs the tail number of the aircraft, 
the JCN, and the WUC, and the OEM part number is automatically queried. 

The second related effort is ongoing at AFLCMC.140 This is a mapping of WUC to NIIN. 
Although this bot does fully map sections of maintenance and supply systems, this work is limited to 
the F-16 and B-2 weapon systems, which have reference designators in the system that make them 
easier to map. Alternatively, the use case we propose will add an entirely new capability, linking JCN 
to part number to WUC to NSN to MMH. This will provide a more holistic view of a given repair 
by incorporating supply and maintenance perspectives. 

Third, HAF/A4 has funded an automation that compares data from IMDS and the CEMS. The 
bot will identify discrepancies in location and engine status between the two systems and list these 
discrepancies in a report. This bot is intended to identify errors rather than bridge multiple data 
systems. 

Applying the Taxonomy to the Use Case 
Developing a bot to connect supply and maintenance systems would enable new analysis and 

provide a more nuanced view of repairs. As mentioned earlier in this chapter, the first step for bot 
development is to clearly define the bot’s characteristics. To that end, we applied the taxonomy 
described above to characterize and define the use case we developed. This section is intended to be 
illustrative of the usefulness of applying the proposed taxonomy for USAF. This process allows for 
bot development that fully characterizes the bot before it is built.  

Applying the taxonomy serves several purposes. The characterization  

• allows for identification of possible risks, benefits, and limitations of the bot that might not 
be apparent from the bot’s stated objectives as outlined in the previous section  

• facilitates a proactive holistic perspective of the constraints placed on the bot in terms of 
systems that the bot can access and the tasks that the bot is allowed to execute, which in turn 
can reduce the risk of relying on responsive rulemaking that identifies bot issues only after a 
problem occurs  

• informs a more thorough cyber risk analysis, which is discussed in more detail in the 
following chapter, where we use this specific bot example as one of our cyber case studies. 

In the following three tables, we outline the characteristics of the proposed use case across the 
three dimensions described earlier in our introduction to the taxonomy. First, we begin with a 
description of the bot’s environment, which consists of three data systems from which data are drawn 
and one system that outputs consolidated data. Next, we describe the bot’s reasoning and the output 
data that represent the bot’s goal. Finally, we describe how the bot will interact with the systems it 
accesses. In some cases, we draw a distinction between the bot’s initial state (i.e., the first uses of the 
bot after it is developed) and finished state (i.e., the matured version of the bot that advances in 
sophistication). 

 
140 AFLCMC/GB-HN, guided discussion with authors, March 2022.  
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In Table 3.8, we apply the environment dimension to characterize the bot’s ability to access other 
systems. This table will further inform the cyber risk analysis and can help determine whether certain 
risks will emerge. The reader will note that this closed environment includes IMDS, IPB, and ILS-S 
with the output placed on such a system as LIMS-EV, a testing environment, or a data lake. It is 
expected that the population will be both human users and bots. 

Table 3.8. Application of the Environment Dimension Taxonomy to the Use Case 

Characteristic Potential Values Description of Value 

Type Stand-alone Initial state: could be on developer’s local machine 

Platform Initial state: could be in bot development sandbox 
Finished state: output data made available in LIMS-EV. Bot may be 
hosted on the Expeditionary Combat Support System (ECSS) at 
Gunter Air Force Base. 

Scope Bounded Environment limited by capacities of system housing bot, IMDS, 
IPB, and ILS-S 
Note: Restrictions on what the bot can do. Might be unable to 
access sensitive data on these systems (e.g., strategic nuclear 
force). 

Closure Closed The system housing bot, IMDS, IPB, and ILS-S (and LIMS-EV) are 
all CAC restricted and impose additional user restrictions on who 
can access 

Dynamism Dynamic Users and bots may manipulate the system housing bot, IMDS, 
IPB, and ILS-S (and LIMS-EV) 

Permanence Episodic The bot retrieves and consolidates data. Only change to 
environment is output of a log including consolidated data. 
However, no data systems are changed and no data are modified. 

Population Countable Users of IMDS, IPB, and ILS-S (and LIMS-EV if output is 
declassified) are reasonably countable (i.e., the number of people 
who can access these systems). IMDS and ILS-S have especially 
large numbers of users. The large population makes it difficult to 
identify who made errors.  

Diversity  Heterogeneous The population could be made up of humans or bots. 

 
The bot’s intrinsic characteristics determine the functional properties of the bot itself. These 

characteristics for the proposed use case are outlined in Table 3.9. Once a user hits “go,” the bot’s 
knowledge consists of the data it pulls from IMDS, IPB, and ILS-S. Its reasoning follows simple if-
then-else logic to query and match field values across systems, making it single tasked and predictable. 
Its goal is internal, fairly complex, and risky, where the data being compiled are large and important. 
The bot self-terminates when the data have been consolidated, and there is no anthropomorphism 
involved because the bot does not have a physical or audio representation.  
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Table 3.9. Application of the Intrinsic Dimension Taxonomy to the Use Case 

Characteristic Potential Values Description of Value 

Knowledge 

Memory Short-term It retrieves the data that are available, stores them 
temporarily, and then consolidates them based on 
identifying variables (primary keys).  

Source Supplied Data supplied by IMDS, IPB, ILS-S 

Reasoning 

Mechanisms Scripted Bot will be rule-based (if-then-else) with standardized 
inputs and predetermined outputs.  

Agency None Initial state: require user approval before executing 
key steps 

Complete Final state: bot runs autonomously, retrieving and 
consolidating data at predefined intervals in the 
background  

Predictability  Deterministic The same inputs will result in the same outputs. 

Visibility Transparent The retrieval of data will be invisible, but the output log 
will be created and will show where the data came 
from.  

Reactivity Synchronous No intentional delays will be implemented. 

Scheduling Single tasked A user hits go, and the bot executes a single task.  

Multiple 
 

Adaptability 
 

Not applicable: no learning behavior 

Goal orientation 

Complexity High Compiles data from multiple sources that are not 
readily available 

Criticality High Tasks are not high risk or critical to operations. 
However, relaxed data processing will synthesize a lot 
of important data in one place; could pose new 
security risks and might show vulnerabilities to supply 
chain. 

Attainability Achievable Goals are well defined and feasibly reached. 

Explicitness Explicit Output log with merged data is explicitly defined 

Source Internal Goals are programmed into the bot. 

Delegation Complete Depends on state of system where the bot is 
deployed. For example, it is impossible to distinguish 
bot from user on ECSS, IMDS, IPB, and ILS-S. However, 
a system owner may issue separate tokens for bot and 
user. The RPA COE is currently working toward 
hosting bots on Cloud One, which will distinguish bot 
from user. 
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Characteristic Potential Values Description of Value 

Specialization Specialist bot Limited to specific portions of three data systems 

Anthropomorphism 

Name None No name 

Embodiment None No embodiment 

Age None No age 

Gender None No gender 

Ethnicity None No ethnicity 

Profession None No profession 

Personality None No personality 

Emotions None No emotions 

Life cycle 

Lifespan Terminating The bot will self-terminate when the datasets have 
been merged and a log has been compiled 

Creation Human The bot was created by a human 

Reproduction None This bot does not create other bots 

 
We apply the interaction dimension to the use case in Table 3.10. In this table, we outline the 

rules governing how a bot engages with different entities in its environment. The bot’s access is 
partial because it is restricted only to certain fields and data systems. The bot is non-sensing but does 
act on its environment. Communication is limited to input and output of data. The bot would 
initially have no error prevention capabilities, but these could be added to prevent user error when 
entering inputs. 

Table 3.10. Application of the Interaction Dimension Taxonomy to the Use Case 

Characteristic Potential Values Description of Value 

Access Partial The bot is restricted to only querying the fields (primary 
keys) necessary to bridge IMDS, IPB, and ILS-S. 

Sense Non-sensing The bot cannot perceive environmental stimuli except 
when a user hits go. The bot has no physical hardware 
to interact with the environment. 

Act Acting The bot does not manipulate data and does not interact 
with users but does retrieve and compile data to a 
single source. 

Communicate 

Disposition Indifferent The bot is indifferent to others’ actions. 

Veracity Truthful The bot presents factual data without deception. 
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Characteristic Potential Values Description of Value 

Cardinality One-one Even if multiple users can run the bot, only one user will 
run it at a time. 

Directionality Two-way The bot inputs and outputs datasets. 

Directness Direct The only communication would be an error message to 
the user, and the log is output directly by the bot. 

Language capability  None The bot has no language capability. 

Initiative Reactive Waits until someone hits go. 

Robustness 

Error prevention  User Errors in the input data are the responsibility of users. 

Error correction  User The bot will provide error prompts but relies on users to 
fix errors in input data. 

Mobility Static The bot retrieves data from other systems, but its code 
will always remain in the same place. 

Observations and Findings 
Bots and automation provide valuable tools for USAF to improve processes and limit supply 

chain degradation. In this section, we outline the following findings and observations from the bot 
analysis. 

• The USAF A4 community is in its early engagement with bots—developing them in 
generally stovepiped functional areas to automate manual tasks. However, this approach does 
not allow the A4 community to fully leverage the potential of bots. For example, bots that tie 
together data from disparate elements of the logistics enterprise, such as those needed to 
provide a more holistic analysis of parts failures, could be highly impactful. Similarly, 
incorporating optical character recognition could allow the A4 community to bridge gaps 
between systems and reduce time spent on data entry. 

• Early indications reveal that citizen airmen developers are challenged to produce usable bots. 
Questions remain about whether USAF personnel possess the technical expertise to fully 
leverage bot technology, and the data suggest that this concern is warranted. Low- and no-
code environments are an opportunity to use bot development more widely despite the 
limited programming expertise of citizen airmen developers.  

• Developing and implementing bots needs to be weighed against the cybersecurity 
vulnerabilities they introduce. Accordingly, the use of bots versus a modification to an 
information system to enable the capability that bots could provide needs to be weighed 
relative to the value the bots provide in both the short term and the long term. 

• Unified direction and guidance regarding bots could help USAF in general and the A4 
community in particular best maximize the potential of bots. Operating from standard policy 
that outlines what actions a bot is able to take, how it documents its actions, and which bot 
actions require user approval could be useful. Additionally, using a taxonomy to set standard 
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guidance on bot characteristics and the environments that they can inhabit could reduce the 
risk of relying on responsive rulemaking that identifies bot issues only after a problem occurs. 
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Chapter 4 

Addressing Vulnerabilities of Cyber 
Tampering 

As discussed in Chapter 3, the application of bots presents both opportunities and risks to the 
HAF/A4 mission. From a security engineering standpoint, this is true for any change in system 
design or composition: The introduction of new technologies must be considered through a risk-
based lens to present decisionmakers with a balanced argument that considers both positive and 
negative effects. For example, a bot that accesses records to look for anomalies could present itself as 
an attractive automated security enhancement. However, such an addition must consider a host of 
challenges, such as adequately defining anomalies, separating valid changes from those presenting a 
threat, and guarding against the opportunity for the bot itself to serve as a vector for attack. 
Alternatives (such as, in this case, record-based encryption or signing) should then be examined in 
the context of technical, procedural, and training challenges that would accompany such a change. As 
applied to cybersecurity, these considerations are often referred to as requiring a mission assurance 
approach: not focusing cybersecurity decisions on individual systems or controls, but placing them in 
the context of overall mission risk. Doing so requires methods that consider the entirety of the system 
while supporting specific security actions. 

The analysis to enable this level of cybersecurity decisionmaking forms the basis for the cyber 
tampering task of this effort. We were asked to focus on cyber threats that affect the integrity of the 
HAF/A4 mission, with emphasis on events that could easily go unnoticed (yet lead to major issues) 
and methods for mitigation.141 It was essential that the process employed be equally applicable across 
the HAF/A4 enterprise, including legacy systems, systems undergoing modernization (such as the 
ESCAPE system), and future systems under consideration (such as those discussed in the prior 
chapter on bots). Most importantly, the analysis must place cyber risk in a mission context to inform 
decisionmakers of how to balance the risks and rewards for any system change and tie 
recommendations to the functions and data essential to HAF/A4 mission execution.  

This chapter presents a process, based on established security engineering literature, to assist 
decisionmakers in systematically deciding where to invest in mitigation measures to reduce such risks 
as tampering. In addition, examples of the application of the process are provided to demonstrate 
how such a process can inform both specific actions (e.g., investment into specific controls) and 
general actions across the system life cycle. 

 
141 As previously discussed, this category of threats was informally referred to by the sponsor as mischief versus mayhem: cyber 
actors causing small, hard-to-detect problems that could have major downstream ramifications. Traditionally, cybersecurity 
considers risks relative to confidentiality, availability, and integrity, with tampering and errors a subset of the latter 
(“Tampering,” webpage, National Institute of Standards and Technology Information Technology Laboratory Computer 
Security Resource Center, undated).  



  62 

Methodology 
For this analysis, we employed the OCTAVE Allegro process.142 Developed by the Software 

Engineering Institute at Carnegie Mellon University, the OCTAVE methodology met our 
requirements as a structured, risk-based, full–life cycle approach to analyzing systems for the purpose 
of identifying potential security concerns (leading to the evaluation and selection of mitigations). The 
OCTAVE process unfolds as a series of eight steps, depicted in Figure 4.1. 

Figure 4.1. The OCTAVE Allegro Process, with RAND and HAF/A4 Intersections Denoted 

  

NOTE: CIO = chief information officer; RMF = risk management framework. 

The core OCTAVE Allegro process steps proceed as follows:  

• Step 1. Establish Risk Management Criteria: The first step in the process is the 
establishment of risk criteria. This step is purposefully disconnected from those that 
immediately follow to ensure that the criteria selected are independent of the system 
considerations to follow.  

• Step 2. Develop Information Asset Profile: Central to the process is the act of identifying 
what are termed information assets. Information assets are key data elements necessary for the 
execution of the mission. Focusing on these assets allows emphasis to shift from the 

 
142 Allegro refers to a version of the process that is less process intensive to be streamlined and adaptable to a variety of uses. See 
Richard A. Caralli, James F. Stevens, Lisa R. Young, and William R. Wilson, Introducing OCTAVE Allegro: Improving the 
Information Security Risk Assessment Process, Software Engineering Institute, Carnegie Mellon University, May 2007; and 
Christopher Alberts, Peter Gordon, and Audrey Dorofee, Managing Information Security Risks: The OCTAVE (SM) Approach, 
Addison-Wesley Professional, 2002. 
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instantiation of the specific architecture and placed on the information life cycle.143 Doing so 
assists in setting the scope of the evaluation because only the containers (and associated 
threats) relevant to identified information assets are considered. 

• Step 3. Identify Information Asset Containers: The third step of the process concerns the 
mapping of the more abstract information assets to the tangible realization of computing 
infrastructure. This involves enumerating the locations within the system where the 
information assets under examination reside, considering technical, physical, and people 
categorizations. This exercise ensures that the scope of the analysis includes both commonly 
considered elements (such as endpoints and network devices) and less common elements 
(such as backup devices, nonelectronic media, and key personnel). Where the examination is 
focused on existing systems (or systems under acquisition) for which documentation exists, 
these can be employed to support this mapping. 

• Steps 4 and 5. Identify Areas of Concern and Identify Threat Scenarios: Steps 4 and 5 of 
the process identify potential areas of concern (Step 4), which are developed into system-
specific threat scenarios (Step 5). As with other OCTAVE process steps, these may be 
performed using any number of widely accepted modeling and analysis practices from the 
security engineering community. In our experience, these steps can occur in a parallel, 
sequential, or iterative manner, depending on the analysis technique employed.  

• Steps 6 and 7. Identify Risks and Analyze Risks: Step 6 establishes potential consequences 
for each threat scenario by considering its effects on information assets. Step 7 furthers this 
analysis by applying a quantitative measure for the risk assessment based on the risk metrics 
established in Step 1. The result is an impact (consequence) score for use in risk calculation, 
along with threat and vulnerability likelihood scores, to generate an overall risk score using 
the following definition of risk: 

𝑡𝑡𝐵𝐵𝐵𝐵𝑟𝑟 = [𝑇𝑇ℎ𝑡𝑡𝑣𝑣𝐵𝐵𝑇𝑇	 × 	𝑣𝑣𝑣𝑣𝑇𝑇𝑡𝑡𝑣𝑣𝑡𝑡𝐵𝐵𝑏𝑏𝐵𝐵𝑇𝑇𝐵𝐵𝑇𝑇𝑣𝑣] 	× 	𝑡𝑡𝑇𝑇𝑡𝑡𝐵𝐵𝑣𝑣𝑐𝑐𝑣𝑣𝑣𝑣𝑡𝑡𝑡𝑡𝑣𝑣. 

This separation of threat and vulnerability allows the analysis to consider both extrinsic 
factors (probabilities across actors or threat) and intrinsic factors (the presence of adverse 
conditions or vulnerability weaknesses, as identified in Steps 4 and 5). Although these steps 
lead to a quantitative measure, the output score denotes a relative importance of each risk. 
Therefore, the absolute numbers are less important to the result than their comparative 
values, which can be used to focus attention onto the greatest risks. As a result, OCTAVE 
Allegro suggests the practice of grouping risks together into risk pools, which often contain 
similar themes or concerns. Pools are tagged as having primary and secondary risk actions 
(mitigate, defer, accept, transfer), thereby guiding the final step. 

• Step 8. Select Mitigation Approach:  In Step 8, risks are examined for adjudication. Those 
that fall into pools that require action (i.e., mitigation) are examined for the addition of a 

 
143 The information life cycle is composed of information generation, processing, storage, communication, consumption, and 
destruction. More details on the role of this life cycle in the broader context of information assurance can be found in Kamal 
Jabbour and Sarah Muccio, “The Science of Mission Assurance,” Journal of Strategic Security, Vol. 4, No. 2, 2011.  
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control or execution of a security engineering activity to bring the risk to a more acceptable 
level.   

 
Ideally, each step of OCTAVE (and similar types of security analysis) is conducted as a 

workshop, bringing together process and domain experts to perform the analysis. For this research, 
we pulled from internal expertise in cybersecurity, risk management, and information from various 
real and projected Department of the Air Force (DAF) systems to perform and validate the analysis. 
Incorporation of a broader set of stakeholders in a workshop during future iterations would better 
refine the outcomes to HAF/A4 needs. 

Further details regarding the advantages OCTAVE Allegro and similar processes provide and 
the rationale for our selection are presented in Appendix D. The choice of OCTAVE corresponded 
to our desire to employ a mission-focused approach compatible with existing processes (such as the 
DoD RMF)144 that was applicable to legacy, modernizing, and emerging systems. Crucially, it 
supplied a repeatable, risk-based, life cycle-oriented process foundation on which we could develop 
our analysis. 

Adaptation of OCTAVE to Support HAF/A4 
Taking advantage of the structure OCTAVE Allegro (and similar processes) impose on the 

otherwise unstructured application of the various metrics, models, and best practices common in the 
security community, we adapted the process to better support security investment decisionmaking in 
a mission context. This section covers the approach taken to tailor OCTAVE Allegro to focus on the 
information integrity challenges of interest to HAF/A4, balance the necessary input information 
with the required level of output fidelity, and ensure the applicability of the results to HAF/A4 
concerns. 

Process Extensions 
To support novel insight into potential mitigations, Step 8 of the analysis was augmented to 

incorporate the following considerations relative to proposed controls: 

• Change to probability (threat): Many controls result in a change to the probability of 
successful threat action (e.g., alter the ability for the threat actor to mount a successful 
attack). Identifying the projected change to the threat enables the recalculation of risk scores 
and examination of what-if scenarios.  

• Change to consequence (impact): Other controls might change a risk’s consequence in 
addition to (or instead of) threat probability. Examples include log audits, which do not 

 
144 Department of Defense Instruction 8510.01, Risk Management Framework (RMF) for DoD Information Technology (IT), 
U.S. Department of Defense Office of the Chief Information Officer, July 19, 2022. 
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impede an intrusion but enhance the ability of an organization to respond and reduce the 
negative outcome. 

• Cost: Ultimately, a primary consideration in the implementation of a new control is the cost 
of the control. Although comprehensive exploration of tool and manpower costs for a given 
control were out of the scope of this analysis, an estimated range (between one and three 
dollar signs [$], corresponding to the low-medium-high scale employed elsewhere) was 
provided to support the analysis. 

• Assumptions: A critical aspect of informing cybersecurity decisionmaking is to state scope, 
efficacy, and cost (direct and indirect) assumptions explicitly. Assumptions employed in the 
calculation of risk inform the interpretation of the analysis. 

• Negatives: As with assumptions, negative aspects of cybersecurity decisions should be 
considered when making control decisions. These aspects contribute to scope, cost, and 
efficacy estimation (capturing such aspects as opportunity cost or the impact a control might 
have on normal operation) and more fully develop the decision landscape. 

Following the evaluation of controls individually, some effort was made to examine the impact of 
controls across risks in the context of the overall system. 

• Total risks addressed: This captured the impact of each control against various risks. This is 
important to the cost-benefit trade-offs that are often made with respect to the scope of the 
intervention (how many individual risks are reduced by this control) versus the focus of the 
intervention (does this control target the highest risks). 

• Magnitude of risks addressed: Complementary to the total risks addressed, the magnitude 
to which the risk was addressed (i.e., the effectiveness of the control) allows a decisionmaker 
to understand the extent to which the risk has been reduced (overall risk score) or the change 
in threat probability. The latter was calculated across each control-threat pairing (how well 
does this control mitigate this risk), across all risks (what is the overall threat reduction for 
every threat vector), and to determine average impact (which control provides the most 
benefit, on average).  

Additionally, the execution of the process can (and, in many cases, should) occur following the 
addition of controls. This allows for an examination of how the threat surface changes in response to 
the addition of a control, as part of the cost-benefit analysis inherent in any cybersecurity decision.  

Process Step Adaptation 
In addition to the extensions and adaptations above, specific process steps were standardized to 

focus on the risk aspects most relevant to the HAF/A4 mission. 
For Step 1, we consulted the previously cited HAF/A4 CIO Risk Frame to ensure that selected 

risk considerations were aligned to HAF/A4 CIO guidance.145 Targeting mission risk as the 
appropriate level to capture IT and operational technology concerns and interactions for logistics, we 

 
145 USAF A4 (Program Integration Directorate), A4 Chief Information Officer Cybersecurity Risk Frame, September 4, 2020.  
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identified those risks that capture the time and scope concerns identified in prior RAND research.146 
This was augmented by an examination of the literature surrounding other such supply chain 
challenges, such as in the automotive supply chain.147 Candidate measures were validated with 
internal DAF supply chain experts and selected for their relationship to mission effectiveness. This 
resulted in the identification of three measures that captured mission risk, shown in Table 4.1. A 
more directed evaluation of a specific system or scenario could easily replace these risks with other 
such project, mission, or organizational risks as identified in the Risk Frame to evaluate specific 
circumstances. 

Table 4.1. Risk Measurement Criteria Employed for OCTAVE 

Impact Category Impact Area Low Moderate High 

Time criticality 
Time to survive Weeks to months Days to weeks Hours to days 

Time to recover Hours to days Days to weeks Weeks to months 

Scope of impact Units affected Platform Wing Fleet 

SOURCES: Derived from Don Snyder, George E. Hart, Kristin F. Lynch, and John G. Drew, Ensuring U.S. Air 
Force Operations During Cyber Attacks Against Combat Support Systems: Guidance for Where to Focus 
Mitigation Efforts, RAND Corporation, RR-620-AF, 2015; and David Simchi-Levi, William Schmidt, Yehua Wei, 
Peter Yun Zhang, Keith Combs, Yao Ge, Oleg Gusikhin, Michael Sanders, and Don Zhang, “Identifying Risks 
and Mitigating Disruptions in the Automotive Supply Chain,” Interfaces, Vol. 45, No. 5, October 2015; and 
RAND analysis. 

 
As part of Step 2, internal SME workshops were employed to identify information assets for 

which a loss of integrity would hamper mission execution. Alternately, the process described in 
Snyder et al. (2015) provides a nonexpert, structured means by which potential information assets 
can be evaluated. 

For Steps 4 and 5, we employed an analysis technique known as misuse (or abuse) case 
development.148 This technique is most commonly associated with security requirement development 
and provides an attacker viewpoint on the system engineering concept of use cases. The open-ended, 
system-focused nature of the approach supported the goals of this analysis by enabling the same 
analysis approach for each system considered, using the information assets themselves as the core 
elements of the use cases.   

Misuse cases were generated in two parts: a high-level diagram using standard unified modeling 
language and an accompanying structured account providing technical details that include attack 
course of events, alternate paths, pre- and post-conditions for the attack, and extension and exception 
points. Additional information (such as probabilities of attack or success and attacker cost) might 

 
146 Snyder et al., 2015.  
147 Simchi-Levi et al., 2015.  
148 Guttorm Sindre and Andreas L. Opdahl, “Eliciting Security Requirements with Misuse Cases,” Requirements Engineering, 
Vol. 10, No. 1, January 2005.   
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also be captured to assist in later analysis.149 The fleshed-out misuse cases provided the detailed 
information required to successfully complete the remaining OCTAVE Allegro steps. Although 
misuse cases were employed in this analysis, the information security literature includes several 
qualitative and quantitative approaches that may be employed in addition to, or instead of, this 
approach. For instance, the OCTAVE method proposes the use of generic attack trees.150 Most 
importantly, techniques should be chosen to align with available information and the desired level of 
analytic detail. 

To explore the question of mischief versus mayhem posed by HAF/A4 we enumerated and 
scored threats along two factors: capacity (the combination of skill and resources) and focus (the level 
of targeting involved in the attack). This simple threat model creates a set of four threat classes that 
employ variables captured in the misuse cases developed in Step 5. An additional threat class 
of Insider was added to represent concerns raised that that specific threat class. An evaluation of each 
was performed using the same low-medium-high scale employed for other risk calculations and 
aggregated into an overall threat rating. This construct easily allows reevaluation of risk scores along 
different individual threat actors or the ability to change threat actor values based on other 
information (e.g., intel sources, prior experience). The potential to conduct analysis across different 
scopes and types of threats and vulnerabilities is a key factor in OCTAVE’s ability to support 
analysis across system types and levels of maturity. 

In most scoring steps, we took a risk-seeking stance, intended to elevate the largest risks. This 
was accomplished by tracking the distribution of low-medium-high values assigned to each category 
and limiting the number of high values to be one-half of the number of low values.151 This worked to 
frame risks and focus analysis on attacks and assets that pose the greatest risk (in this case, those with 
the largest impact on information integrity). 

Finally, in Step 8 we sought to maintain consistency with existing processes by linking 
mitigations to recognized standards, such as National Institute of Standards and Technology 
(NIST) Special Publication 800-53 (revision 5),152 the latest version of “Security and Privacy 
Controls for Information Systems and Organizations” employed within the RMF process. Candidate 
mitigations were examined against the risks along multiple security engineering dimensions. The goal 
of this linkage was to ensure that recommendations can be directly employed by a decisionmaker or 
incorporated into RMF analysis to support authority to operate (ATO) decisions. 

 
149 Chad Heitzenrater and Andrew Simpson, “Misuse, Abuse and Reuse: Economic Utility Functions for Characterising 
Security Requirements,” in Proceedings of the 2nd International Workshop on Agile Secure Development, August 2016.  
150 In addition to the simple attack trees identified in OCTAVE Allegro, the development and analysis of attack trees has long 
been an active area of research within the cybersecurity literature. A good overview of approaches to attack tree modeling can be 
found in Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer, “DAG-Based Attack and Defense Modeling: 
Don’t Miss the Forest for the Attack Trees,” Computer Science Review, Vols. 13–14, November 2014; and Adam Shostack, 
Threat Modeling: Designing for Security, 1st ed., Wiley Publishing, 2014. An approach to combine attack trees with misuse cases 
is discussed in Inger Anne Tøndel, Jostein Jensen, and Lillian Røstad, “Combining Misuse Cases with Attack Trees and 
Security Activity Models,” Proceedings of 2010 International Conference on Availability, Reliability and Security, ARES, 2010. 
151 This is a practice that has been employed in other relative-risk methodologies to control the outcome risk profile. 
Participants may also take such stances as risk-neutral (using the same number of each risk rating) or risk averse in which risk 
values are weighted toward higher ratings, resulting in a greater number of items identified as high risk. 
152 NIST, Security and Privacy Controls for Information Systems and Organizations, SP 800-53, revision 5, September 2020.  
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Results 
To demonstrate the utility of the process, we applied the process described above against three 

specific use cases of interest to the HAF/A4 mission (hereafter referred to as threads): 

• Thread 1: Demand forecasting. This thread captures a general process flow related to the 
development of a demand forecast from disparate data sources, resulting in a processed 
output that feeds the ordering process. 

• Thread 2: Bot development and use. In this thread, an idealized workflow for the development, 
testing, storage, and use of business applications using a low- or no-code platform is defined 
and analyzed. It does not focus on any specific bot use case but instead examines risk to bot 
development and deployment overall. 

• Thread 3: Bot use for data integration to enable failure analysis. This thread builds on the 
concepts presented within Threads 1 and 2 to examine a specific bot use case, as described in 
Chapter 3. It envisions the operation of a bot with the task of compiling information from 
operational databases and producing an output record for failure analysis. 

These threads were chosen for their links to the other aspects of this project. Thread 1 represents 
a use case taken from the discussion in Chapter 2, serving as an example of applying OCTAVE 
Allegro to current and evolving systems (i.e., ESCAPE). Threads 2 and 3 provide insights into the 
discussion in Chapter 3, demonstrating the use of OCTAVE Allegro to inform implementation 
decisionmaking in a technology adoption use case. Each thread is described graphically and in detail 
below, along with the results from our example analysis. 

Our analysis of these threads demonstrates the application of a security framework for HAF/A4 
and meets specific project goals: first, to provide a broad viewpoint of potential threats that is 
different from and complementary to the viewpoint supplied by the current, RMF-driven analysis 
already occurring for the as-is and to-be architectures. Second, our implementation of the OCTAVE 
was structured to minimize impact on existing processes. This was done in part to avoid affecting the 
HAF/A4P cybersecurity team, who could not support multiple workshops or enable access to all 
necessary materials. Our implementation demonstrates how HAF/A4 might conduct such an 
analysis without disrupting current security operations. Finally, the application of Thread 1 and 
Thread 2 outputs provides an example of how ongoing analysis can be employed to make 
recommendations relative to a future use case. 

Thread 1: Demand Forecasting 
Our first thread draws on current operations by examining the use of a system (demand forecast 

system) by a user/demand forecast planner (airman) employing software to develop a demand 
forecast output. This is accomplished by accessing one or more data repositories. Additionally, it is 
assumed that the system is administered by one or more administrative users. This is depicted in 
Figure 4.2. 
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Figure 4.2. Depiction of the Misuse Cases Identified as Part of Thread 1, Step 4

Drawing on domain expertise, we identified three primary information asset classes as part of 
Step 2 (e.g., flying hours, number of parts failures),153 a forecast model algorithm (implementation), 
and the demand forecast (algorithm output). 

Each of these was evaluated relative to integrity concerns, resulting in the identification of five 
potential misuse cases. Figure 4.3 is a depiction of the potential misuse cases. The information assets 
and use case actions (white circles) employed in carrying out the scenario depicted in Figure 4.2 are 
affected by misuser or threat actor actions (black circles).  

• Altering/faking data occurs when the misuser employs access to create, change, or otherwise 
manipulate data employed in demand forecast generation.

• Altering/faking forecast occurs when a false demand forecast is generated (using legitimate or 
illegitimate access) or an existing demand forecast is altered in a way that misrepresents the 
actual demand.

• Altering software occurs when the implementation of the demand forecasting algorithm is 
altered to produce incorrect results.

• Executing vulnerability occurs when a supporting misuse case permits misuser access to an 
information asset container.

• Stealing credentials is another supporting misuse case in which legitimate credentials are 
misappropriated or misused as part of another objective.

The supporting distinction refers to the objective of the misuser action, separating misuse cases 
that directly affect an information asset (e.g., alteration of the demand forecasting software) from
misuse cases that could support multiple misuse cases (e.g., a vulnerability that permits access to the
demand forecast software for alteration or other types of misuse). 

153 These were originally enumerated as individual information assets. As we conducted the analysis, we determined that, absent 
specific data relative to their generation and storage, differentiation did not contribute further insight. As a result, these were 
combined into input data. 
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Figure 4.3. Depiction of the Misuse Cases Identified as Part of Thread 1, Step 4

NOTE: The Security Control asset is gray to indicate its addition as part of a second pass of the analysis.

Applying these misuse cases to the three identified information assets resulted in 78 primary risks 
in Step 5. These were subsequently scored (Step 6) and then ranked according to the established risk 
criteria through a series of small and large group team discussions (Step 7), leading to a set of risk 
pools numbered 1 (highest) to 4 (lowest) (Step 8). After this initial scoring, an additional 
information asset was added. This generic security control represents the monitoring tools commonly 
employed on the Air Force Network (AFNet) and is depicted in the gray circle in Figure 4.3. Steps 
2–7 were re-executed, resulting in a larger set of potential risks (83). 

Risk and Mitigation Analysis Results
Determining the controls to implement for any mission set must consider factors that are not 

necessarily captured in this analysis, such as overall system security posture and system development 
concerns. This analysis focused on a core set of 20 common integrity controls applied to the risks 
identified in the upper risk pools (Pool 1 and Pool 2), allowing the research team to appropriately 
scope the analysis and identify key aspects important to decisionmaking:

• Mitigations with the broadest impact (i.e., contributed to the largest number of Pool 1 and 
Pool 2 risks) included those related to monitoring and event logging—both already 
implemented in some way as part of the system’s current defensive posture. As reactive 
measures, these also had some of the lowest scores relative to risk reduction, having some 
impact on consequence but little contribution to the threat reduction component of risk.154

• Mitigations with the largest impact include cryptographic measures to protect the demand 
forecast and to validate the demand forecast software. Another high-impact (although likely 
unimplementable) control includes removing remote access to the domain forecast software. 
Although such a measure could have high costs in productivity or deployment options 

154 It should be noted that this is a matter of debate within the security community. While effective detection may conceivably 
halt an integrity attack, IBM cites the average time to identify a breach as 207 days—more than sufficient time to execute an 
integrity attack with mission impact (IBM, Cost of a Data Breach Report 2022, 2022). 
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(depending on architectural and operational considerations), the removal of access to the 
broader internet would mitigate many threat vectors to some of the highest-risk assets.

• The cryptographic mechanisms employed to manage and validate demand forecast software, 
output, and users are the most expensive. This is largely because of the required technical and 
procedural changes, which include management of these systems and the additional effort 
and training required. High-impact controls around software and code analysis will vary 
depending on the vendor’s process maturity, expertise, and willingness to pass along these 
costs as part of the acquisition process.

The details of the risk and mitigation analysis behind these results, including a mapping of the 
considered mitigations to NIST SP 800-53 revision 5 controls, can be found in Appendix E.

Thread 2: Bot Development and Employment
Unlike Thread 1, Thread 2 describes an environment and mission set that has not yet been fully 

realized: a robust bot development and utilization environment, as described in Chapter 3. Figure 4.4
illustrates this scenario, which was employed to consider risks and mitigations prior to future bot 
development.

Figure 4.4. Notional Bot Development and Employment Scenario Used for Analysis

NOTE: This scenario assumes a static bot model and does not differentiate between operational and test data. 
The trust authority (e.g., a public key infrastructure [PKI]/CAC server) is not considered in the analysis.

The depicted scenario envisions a development system that hosts a development platform, on 
which the bot is developed and tested by a developer (airman)—potentially accessing databases to do 
so. The resulting code (and, potentially, the model) is stored in a development repository, which may 
be separate from (but connected to) the bot repository that stores compiled, ready-to-use bots. It is 
from the bot repository that the user (airman) accesses bots for employment, via an execution system. 
This scenario assumes static bot models (as opposed to learning bots) and explicitly recognizes that a 
trust authority (e.g., a CAC-enabled PKI) is present but might not be supported by all systems.
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From this scenario, four information assets were identified: bot source code, bot (compiled), bot 
model, and data (test and operational). From this scenario, seven potential misuse cases were 
articulated, as depicted in Figure 4.5. 

Figure 4.5. Misuse Diagram for Thread 2

NOTE: Dev = development; Repo = repository. White circles and solid arrows refer to user actions with or on 
information assets, while black circles and dashed arrows represent potential attacker actions against those 
assets.

As in Thread 1, the misuse cases identified represented a mixture of cases directly affecting 
information assets and those that support other misuse cases. In addition to the two supporting 
misuse cases already discussed (steal credentials and execute vulnerability), the following five misuse 
cases were defined:

• Alter bot executable occurs when compiled bot code is changed in a way that affects its 
execution or output.

• Alter bot model refers to the data or decision model employed by the bot executable. For most 
current bots, this model is represented in code as part of the system executable; however, a 
bot that incorporates ML may use ML that results in a model generated and stored separately 
as part of the development and training process.

• Alter bot code occurs when the code or commands employed in defining the bot are altered.
• Substitute artifacts/data refers to an instance in which a threat changes or substitutes artifacts 

(results, reports, diagrams) or data employed in the creation or execution of the bot.
• Alter/fake data occurs when the data employed in developing, training, or testing are altered 

or forged to undermine those processes.
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Risk and Mitigation Analysis Results
Risk and misuse analysis for this thread identified 70 risks, which were pooled and analyzed 

against the described scenario. Appendix E provides detailed findings that relate specific mitigations 
to NIST SP 800-53 revision 5 controls and “Open Web Application Security Project (OWASP) 
Top 10 Low-Code/No-Code (LCNC) Security Risks.”155 From this detailed analysis a few broad 
observations can be made for HAF/A4 consideration in the implementation of bot development:

• Remediation techniques (such as audits, standards, and policy) remain the mitigations with 
the broadest impact—although generally not the largest reduction in risk. In addition to 
audits, software security process and design practices (such as disabling user and service 
accounts) represent some of the lowest cost controls considered.

• Although the promise of low- and no-code environments is their utility to nonprogrammers, 
it will still be essential to maintain a level of quality in bot development operation to limit the 
introduction of vulnerabilities or errors leading to compromises of integrity.

• Some of the largest impacts to integrity risk, both per risk and across risks, involve efforts to 
secure the development environment itself.

Thread 3: Bot Employment for Data Integration to Enable Failure Analysis
For Thread 3, we sought to bring together the insights generated in Threads 1 and 2 to apply 

these concepts to the scenario outlined in Chapter 3 and depicted in Figure 4.6.

Figure 4.6. Depiction of the Thread 3 Bot Use Case

This scenario depicts a pilot providing a debrief to a debriefer (airman) who enters the 
information into a debrief system that stores details into the IMDS and ILS-S databases. A 
maintainer (airman) employs a bot (retrieved from a bot repository or platform) via an execution 

155 OWASP is an industry-recognized consortium that frequently issues lists of common flaws in an effort to raise awareness of 
security concerns (OWASP, “OWASP Top 10 Low-Code/No-Code Security Risks,” webpage, undated).
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system, which accesses the data stored in IMDS and ILS-S to produce an output stored in a data 
repository where a support section (airman) can access the output. 

For this thread, we further scoped the bot aspect of the scenario by assuming the use of the 
UiPath platform and focused only on bots developed and applied to the failure analysis problem 
(analogous to the demand forecasting problem explored in Thread 1). The goal of this exercise was to 
demonstrate application of security analysis to a technology solution currently under consideration 
by HAF/A4, supporting investment decision processes. 

Risk and Mitigation Analysis Results 
Building on the existing analysis conducted via the previous threats, we identified 50 potential 

risks and several potential mitigation actions for HAF/A4 to consider in the implementation of a 
maintenance and supply data integration bot or for bots in general.  

• The largest risks in our analysis remain those related to undermining the software or 
platform. This is especially relevant in RPA environments, which use significant amounts of 
vendor-controlled middleware and offer various configurations. Steps to take include the 
following: 

- Ensure that processes for patching are in place. It is important not only to consider the 
platform but also to include runtime environments (endpoints, browsers, or runtime 
libraries from the vendor) and dependent frameworks.156 

- Maintain a security-focused configuration. Ensuring the use of encryption for inter-process 
communication and data at rest (inputs, outputs, logs, etc.), disabling unnecessary 
features, and enabling authentication logs are all actions that an administrator should 
enact on the platform by default.  

- Understand the security state of employed platforms. Like all software, RPA environments 
have vulnerabilities, but the system security development life cycle (SSDLC) activities 
around review, scanning, and test processes reduce their likelihood and severity.157 
Having insight into these processes will assist HAF/A4 cyber professionals in evaluating 
the true risk of use and ensuring that proper mitigations are in place. 

- Red-team development and testing environments. Because generating insight into vendor 
SSDLCs is notoriously difficult, the next best option is a robust and ongoing program of 
red-teaming to evaluate the effectiveness of the activities above. Although only as effective 
as the team and rules of engagement allow, this is a key means for assessing both coverage 
and effectiveness of controls. 

 
156 In addition to the software itself, many platforms are built on top of frameworks, such as Microsoft’s .NET. It is important 
to consider such dependencies as part of the threat surface and include them in maintenance efforts. This consideration can be 
enabled through the adoption of such constructs as a vendor-supplied software bill of materials (SBOM) (Cybersecurity and 
Infrastructure Security Agency, “Software Bill of Materials (SBOM),” webpage, undated). 
157 A simple search identified a handful of vulnerabilities in versions of the UiPath platform, some that are severe and allow 
remote code execution (National Vulnerability Database, National Institute of Standards and Technology, undated). Insights 
into vendor practices will help contextualize the likelihood of further severe vulnerabilities. 



  75 

• Implement two-factor authentication (2FA) wherever possible. Although DoD uses 2FA by 
virtue of CACs for all AFNet machines, these protections might not always extend through 
vendor platforms accessed via browsers or off-premises servers. Using strong authentication 
and encrypted communications channels, potentially through an alternate 2FA 
implementation, would remove a host of Pool 2 risks related to data and code storage and 
movement. 

• Well-developed policies and procedures contribute to risks across the board. Although it 
does not have the largest impact per risk, this set of mitigations could have both proactive 
contributions of reducing likelihood (such as the OWASP recommendations related to RPA 
secure design, coding standards, and artifact review) and reductions in risk consequence by 
defining essential reactive processes (such as when bots should be removed from service or 
how to respond to events). This is especially critical in the case of RPA development and use 
by nondevelopers, who might not understand or appreciate their role in reducing the 
introduction of responsibilities. 

Finally, we note that the sheer number of ways in which RPA platforms can be deployed and 
used necessitates careful consideration on the part of HAF/A4. Deployment and use architectures 
dictate such elements as the use, location, and storage of logging; where, how, and to whom data are 
transmitted; and what additional software is used as part of the process runtime (including vendor-
produced and third-party ecosystems, such as browsers). All of this contributes to the overall threat 
surface and drives many of the risk estimates discussed above. These concepts are a prime example of 
early-life cycle decisionmaking with profound impact to risk decisions and are echoed in the 
recommendations outlined in Chapter 5. 

Limitations and Extensions 
As discussed in Appendix D, the use of OCTAVE Allegro (or any risk-based cybersecurity 

analysis technique) brings a set of pros and cons, some of which relate to the decisions made 
throughout the analysis. For this analysis, the research team sought a broad look at a specific class of 
risks: those risks related to data asset integrity, their effect on spare parts supply, and the subsequent 
impact on risk to mission. This section outlines decisions made relative to this goal and highlights 
how this base analysis could be further expanded in scope and fidelity. 

• Limited workshops. Ideally, OCTAVE Allegro steps are conducted as workshops with system 
owners, practitioners, and the larger set of stakeholders involved. With the burden on 
HAF/A4P a consideration, we sought to limit interaction with stakeholders. As developed, 
outputs were scoped to provide input to the RMF process, where security expertise already 
resides. Because RMF is primarily an ex post activity, our application of OCTAVE 
demonstrates a means to incorporate such security thinking throughout the system’s life 
cycle, demonstrating analyses that are broader in scope (e.g., considering additional system 
interactions) or of greater depth (e.g., examining specific IT), but ideally requiring more 
interactive and directed stakeholder involvement. 
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• Relative assessments. OCTAVE Allegro is a relative risk assessment process. By anchoring 
risk measurements in mission risk, the implemented process supports mission assurance but 
is ultimately limited by the basis for comparison. A holistic analysis would consider a broader 
context, such as risks to confidentiality and availability and how risk changes throughout the 
spectrum of conflict. In addition, other nontechnical aspects, such as compliance and decision 
authority, were not incorporated as part of the RMF but are critical considerations when 
implementing a system security posture. 

• Generic threat model. This analysis employed a threat actor model that combined scores across 
the capacity and focus continuum (plus insiders), as described. A more detailed analysis of 
specific systems might consider each of these threats individually and execute the analysis 
against only the pertinent threats (e.g., high-capacity and high-focus threats, such as advanced 
persistent threats) or drive scores based on supplied intelligence. 

• Risk stance. In addition to employing a broad threat model, our analysis took a risk-averse 
stance in our scoring (rather than a risk-neutral or risk-seeking stance, which would have 
resulted in a greater number of high-risk elements). This was done to focus attention on the 
most-salient risks. A different stance might better capture HAF/A4’s true operational 
environment or leadership viewpoint and might be used to examine how risks change under 
competition, crisis, and conflict. 

Each of these decisions represents a potential departure point for further investigation that could 
sharpen, adapt, or expand on the example analysis as presented. Importantly, these elements 
represent the core contribution of a method with the flexibility to adapt and inform cybersecurity 
investment decisions, moving the practice beyond static checklists and toward life cycle security 
engineering.  

Observations and Findings 
The need to establish and maintain an effective cybersecurity posture, especially in dynamic 

environments with systems undergoing migration and refresh, often leads to complex and sometimes 
conflicting demands that require analysis and trade-offs to resolve. This section summarizes the key 
themes identified in our analysis, providing a more general view of these challenges as they pertain to 
the A4 community’s mission. 

• Each of the three threads considered here identified the software supply chain, software 
vulnerabilities, and credential-based attacks as potential vectors for integrity attacks.  

- It is possible that CAC will not support 2FA between all entities, depending on the 
deployment architecture. In this case, it is essential to understand authentication 
boundaries between system components.  

- Although the centralized PKI supplied by CAC enablement supports protections against 
most credential-based attacks, software supply chain and software vulnerability 
mitigation measures are less well supported.  
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• Many of the highest-scored risks were rooted in the software supply chain rather than in data 
alone. This is primarily because of existing DAF processes to deal with data issues (such as 
latency and consistency); these processes can compensate for minor errors before they 
compound. However, movement toward automation (e.g., widespread adoption of bots) 
could reduce such safeguards. This highlights the importance of adopting security analysis as 
part of a decisionmaking process. 

• Thread 1 focused on the risks associated with a loss of integrity of data processing software, 
which has the potential to lead to many hard-to-detect tampering attacks. Methods for 
addressing this threat vary in cost, complexity, and effectiveness.   

- Placing requirements on software vendors might not incur immediate costs but could 
limit choice of available software or incur greater time and cost in contracting while still 
requiring government expertise to verify effectiveness. 

- Measures undertaken in house (e.g., attestation) could offer greater effectiveness and 
more control but are also likely to require additional expertise, process, and technical 
insight. 

- As demonstrated by the inclusion of the security control as part of the threat surface, all 
software—regardless of source—should be considered for both positive and negative 
contributions to the risk posture. 

• Thread 2 demonstrated analysis of potential future operations. This thread identified several 
risks related to both development and operation of bots and underscored the need to 
incorporate training and best practice. 

- The bot development and operations platform should be considered a potential vector for 
vulnerability and actively mitigated through technical and nontechnical means (patching, 
red-teaming, etc.). 

- Threats to both the development and operations environment should be considered; the 
former provides risks that could be particularly hard to detect—especially for citizen 
airmen developers with little formal training in software. 

- In addition to malicious threats, nonmalicious action by citizen airmen developers is a 
risk that should not be overlooked. Best practice, training, and review should be 
employed to help mitigate this risk.  

- This is not to say that citizen airmen developers are a bad idea but that the benefit of 
their use should be weighed against the potential security risks for the development of a 
given bot. 

• Thread 3 brought together elements of Thread 1 and Thread 2 to demonstrate how analysis 
can be employed to drive decisionmaking of technologies under consideration, incorporating 
cybersecurity into acquisition life cycle and mission-execution considerations. Conducting 
such analysis throughout the process can inform key deployment decisions (e.g., the 
configuration of UiPath), affecting risk, cost, and effectiveness. 

• Across all three threads, robust security incorporates a mixture of controls from across the 
variety of mitigations. Current HAF/A4 RMF controls are primarily focused on detection 
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and remediation (as described in Thread 1) and are unlikely to be sufficient to mitigate the 
focused, tampering-based mischief attacks under consideration here. 

It is unclear whether integrity-based attacks are the greatest overall risks to the HAF/A4 
mission.  The presented analysis provides insight into integrity attacks against key functions. More 
importantly, the process presented provides a mechanism to place those risks in the context of overall 
security concerns, such as confidentiality or availability attacks across the spectrum of conflict. In 
doing so, this research demonstrates how augmenting existing security analysis with a life cycle 
approach, such as OCTAVE Allegro, would allow HAF/A4 to understand these risks and methods 
for mitigation more fully, leading to better-informed cybersecurity decisionmaking. 
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Chapter 5 

Recommendations 

Recognizing the complexity of analyzing USAF supply chains as a whole, our analysis focused on 
three separate and specific topics that were of particular interest to HAF/Logistics Directorate 
(A4L): demand forecasting, RPA, and cyber integrity. Through the course of our research on 
methods to improve demand forecasting, how to apply RPA to improve supply chain effectiveness 
and efficiency, and how to mitigate vulnerabilities associated with cyber tampering, we identified 
intersections that loosely tied these areas together.  

A review of legacy USAF demand forecasting methods, current efforts to modernize USAF 
supply chain planning via ESCAPE, and recent academic work on emerging methods in spare part 
demand forecasting highlighted that more-integrated datasets could enable the exploration of new 
methods for demand forecasting that incorporate more part demand, usage, and maintenance data. In 
this study, the research on demand forecasting and the research on bots was combined for an RPA 
bot that would facilitate analysis and be of use to demand forecasters by linking supply and 
maintenance data. Although we did not conduct analysis using these integrated data and cannot 
conclude that these data would improve demand forecasting, the availability of such data is a 
prerequisite for exploring the possibility, and it likely has benefits beyond demand forecasting. 
Finally, we applied the cyber integrity analysis methodology to our example bot that would perform 
this data linking to provide concrete examples of the types of risks and mitigations that such a 
methodology would uncover.  

Although we connected these three research areas as described above, they are still distinct topics, 
each with a set of observations, findings, and recommendations. In the sections that follow, we 
summarize the findings already described in each chapter, followed by specific recommendations for 
USAF to consider. 

Demand Forecasting 
Major Observations and Findings 

• Demand forecasting for spare parts is a topic that has received significant attention both 
inside and outside USAF for decades. There are a variety of methods to forecast spare parts 
demand, though there is not a one-size-fits-all approach that has been shown to be the best in 
all cases. 

• Analysis of the sources of demand forecast error revealed primary drivers (i.e., parts for 
EOHs and low-demand parts) that personnel within the 448th SCMW who study the 
problem were mostly aware of but others across the broader A4 community might not be 
aware of. 
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• USAF is in the midst of a major change to the way it forecasts spare parts demand as it shifts 
to ESCAPE, which uses a best-in-class software product that, since the inception of its use, 
has shown improvements in DFA metrics.  

• There is ongoing research both within DoD and across industry on the use of more 
sophisticated techniques, such as AI/ML, for demand forecasting, though additional research 
is needed prior to broad implementation for USAF. These methods will likely require better 
integration of data, including part demand, use factors, and maintenance policies. 

• Demand forecasting is just one part of supply chain planning, and it is unclear whether DFA 
is resulting in increased aircraft downtime. 

Recommendations 
Drawing on a review of legacy demand forecasting in USAF, analysis of recent drivers of USAF 

forecast error, in-process changes to USAF demand forecasting, and relevant academic research, we 
offer the following recommendations: 

• The 448th SCMW should maximize the potential benefits offered by the investment already 
made in ESCAPE. However, USAF should analyze the value of demand forecast 
improvements to supply chain performance prior to making additional investments. USAF is 
already investing a large amount of resources to transition its legacy spare parts planning 
system to a best-in-class commercial system via the ESCAPE program. That transition is still 
in the very early stages: FY 2022, the year this study was completed, is the first year ESCAPE 
is being used for demand forecasting. Although implementation of forecasting systems has 
not yet received much attention in the literature, there is some evidence that organizations do 
not take full advantage of the capabilities of their forecasting software.158 Toward that end, 
USAF should do the following: 

- Continue to evaluate the impact of ESCAPE on DFA. As the analysis of DFA showed, 
there is no single driver of forecast error, and the literature review showed that there is no 
silver bullet, single solution for forecasting. Thus, analysis of forecast error drivers should 
continue as ESCAPE matures.  

- Expand the use of SPM built-in functionality to improve demand forecasts. SPM 
provides significant potential improvements across the pre-processing, processing, and 
post-processing phases of forecasting. Examples include experimenting with statistical 
versus causal techniques or using SEM forecasting techniques to improve depot forecasts. 

- Conduct analyses across different metrics to better understand the drivers of supply chain 
efficiency and effectiveness and whether demand forecasting is limiting efficiency. (DoD 
and USAF have already made significant progress in defining and tracking specific 
metrics related to supply chain efficiency.) 

• If additional investment in forecast accuracy improvement is warranted, the 448th SCMW 
should target specific areas of improvement. Doing so will likely require improved data 

 
158 Boylan and Syntetos, 2009.  
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cleaning and integration, which could have additional benefits. The current sources of 
forecast error vary widely, and USAF should target specific areas where promising research is 
ongoing.  

- One potential area for improvement is the expansion of causal models for predicting 
intermittent spare part demand. As discussed previously, academic literature has begun 
to show that incorporation of multiple installed base features into causal models has the 
potential to improve forecast accuracy, in particular with the inclusion of maintenance 
schedules. However, in most cases, researchers note the challenges associated with data 
collection and cleaning given the tendency for these datasets to be spread across many 
systems, tables, and organizations. This rings particularly true for USAF. The Air Force 
Science Advisory Board pointed out in 2011 that USAF supply chain management has 
inefficiencies due, in part, to the “large number of independent databases used by the 
USAF in tracking its aircraft, their configurations, their maintenance actions, and the 
parts used for maintenance.”159 

- Discussions with SMEs from RAND and USAF indicated that connecting supply and 
maintenance data could have significant benefits well beyond just demand forecasting for 
spare parts. For example, connecting these data could provide a more complete view for a 
particular part; enable measurement of time between replacements to validate 
distribution of failures, globally, and identify time-phased implications; and enable a 
more in-depth causal failure analysis that identifies the impacts of climate and mission 
profile. And better understanding of the relationship between inherent and induced 
failures by part could lead to better demand forecasting. 

Application of Robotic Process Automation to Improve Supply 
Chain 
Major Observations and Findings 

• The USAF A4 community is in its early engagement with bots—developing them in 
generally stovepiped functional areas to automate manual tasks. However, this approach 
might not allow the A4 community to fully leverage the potential of bots. 

• Questions remain about whether USAF personnel possess the technical expertise to fully 
leverage bot technology, and the data suggest that this concern is warranted. 

• Developing and implementing bots needs to be weighed against the cybersecurity 
vulnerabilities they introduce. 

• Unified direction and guidance regarding bots might help USAF in general and the A4 
community in particular best maximize the potential of bots. 

 
159 USAF Scientific Advisory Board, Sustaining Air Force Aging Aircraft into the 21st Century, Department of the Air Force, 
August 1, 2011.  
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Recommendations 
• Expand the application of bots within the A4 community. Additionally, broaden the 

solicitation for bot suggestions to organizations like HAF. Consider bots for such staff 
functions as collecting data for monthly review or reports. Expanding bots to conduct analysis 
within the A4 enterprise could result in opportunities that are more complex, sophisticated, 
and reflective of the art of the possible. We recommend the following bot concepts:  

- Give priority to the bot suggested in Chapter 3 that links IMDS and ILS-S data. Pockets 
of analysts within USAF are manually integrating IMDS, IPB, and ILS-S data to 
conduct failure analysis (which can inform demand forecasting), suggesting that the 
integrated dataset has value. The dataset created by the bot could inform causal analysis 
for failures of parts that goes beyond what is currently done. The utility of this type of 
analysis is being explored by a small team at AFLCMC that has merged these datasets 
manually to analyze failures by region to assess whether break rates vary because of 
differences in weather, location, flying versus ground time, and more. This bot could be 
further expanded to leverage AI/ML to process unstructured information, such as entries 
in the comments section for a JCN entry in IMDS. Such IA bots process large numbers 
of documents that come in varied forms, applying ML and sometimes NLP to extract 
important information. This incremental step above RPA could give USAF a chance to 
see what AI/ML can accomplish in a constrained environment.160 

- USAF could benefit from a bot to scrape data from maintenance systems and flying 
training systems to produce an optimized flying schedule at a flying wing. This bot would 
need to interact with optimization software, which might or might not leverage AI/ML, 
to apply sophisticated optimization algorithms to determine a weekly flying schedule that 
considers short- and long-term operational training requirements and short- and long-
term maintenance requirements.  

- USAF could benefit from a bot to access data across logistics functional areas or scrape 
data to assemble information for status reviews, report submissions, and supply chain 
metric reviews.  

• Work with the USAF lead for RPA to establish service-wide standards for development and 
management of bots and advocate for funding to support increased security measures. 
Decentralized efforts leverage different bot development processes, conform to varying 
cybersecurity standards, and cannot be shared across the enterprise. Creating centralized 
policies, processes, and data systems is necessary for proper management and tracking of bot 
deployment. We offer the following items for recommended inclusion in the service-wide 
standard guidance: 

 
160 We offer this suggested bot with a word of caution. The effectiveness of an IA bot is determined by the data it is trained on. 
If the data are not reliable or do not accurately reflect reality, the results of any IA will also be unreliable. Many of the bots being 
developed in USAF today will identify and fix misalignment between data systems. Until full faith can be placed in the accuracy 
of the data available, very little faith should be placed in AI/ML bots to inform strategic decisions. 
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- The requirement to apply a taxonomy (such as the one described in Chapter 3 and 
Appendix B) to understand the primary characteristics of a bot before development 
begins. It is vital to fully consider all of the systems, users, programs, and documents that 
a bot might interact with—and how the bot interacts with them—before development 
and testing. 

- The requirement to perform a mission assurance–based risk analysis prior to proceeding 
with development of the bot, such as demonstrated in Chapter 4. Risk-based cyber 
analysis that spans the life cycle of development and deployment should be applied as part 
of the decisionmaking process when adopting any new technology, such as bots. Careful 
consideration of architecture, deployment, and configuration in the context of the 
mission can have a significant impact on the assumed cyber risk. The risk analysis could 
be informed by insight gained from applying a taxonomy recommended in Chapter 3 to 
understand the primary characteristics of a bot before development begins.  

- The requirement that bots are developed within a well-maintained and well-managed 
testing environment and not given access to actual data repositories until properly tested 
to improve security of data during bot development. The analysis in Chapter 4 highlights 
the data integrity risks posed by bots and their associated software supply chain. To 
overcome issues with data latency, it is recommended that bots do not output artifact 
documents that involve data that change rapidly. Instead, updates should be made in real 
time to data stored in the repository while adhering to least-privilege principles to manage 
risk. Additional bots might be designed to clean and standardize the format of incoming 
data so that it can be leveraged by all users, and the environment could be hosted (on-
premises or in the cloud) to support increased interoperability and availability. However, 
implementation of these concepts comes with risks and requires analysis to understand 
and mitigate the potential vulnerabilities and consequences. 

- The institution of mechanisms to track user and bot actions separately by giving the bot 
separate access credentials from those of the user. Current RPA bots within USAF act as 
though they are the user, leveraging the user’s access credentials and CAC. This makes it 
impossible for a distinction to be made between the actions of the user and the bot. In 
cases in which a bot behaves unexpectedly and damages data or systems, it will be difficult 
to identify whether it was the user or bot causing the damage.   

Cyber Tampering 
Major Observations and Findings 

• Each of the three threads considered in our cyber analysis identified the software supply 
chain, software vulnerabilities, and credential-based attacks as potential vectors for integrity 
attacks.  

• Many of the highest-scored risks were rooted in the software supply chain rather than in data 
alone. This is because of a few factors, one of which is the lack of DAF visibility into the code 
employed in logistics operations.  
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• Analysis of spare part demand forecast generation (Thread 1) focused on the risks associated 
with a loss of integrity of data processing software, which has the potential to lead to many 
hard-to-detect tampering attacks. 

• Analysis of bot implementation in general (Thread 2) demonstrated the application of the 
OCTAVE Allegro assessment and identified several risks related to both development and 
operation of bots and underscored the need to incorporate training and best practices. 

• This research combined elements of demand forecasting and causal data generated by a bot to 
demonstrate how the application of OCTAVE Allegro can be employed to understand cyber 
risks and influence decisions regarding technologies under consideration. 

• Current HAF/A4 RMF controls are primarily focused on detection and are unlikely to be 
sufficient to mitigate the focused, tampering-based mischief attacks under consideration in 
Chapter 4.   

Recommendations 
• Consider the specific mitigation approaches for integrity attacks identified by this analysis by 

incorporating these considerations into existing cybersecurity investment processes (i.e., 
RMF). This should be accomplished by placing these options in the context of the system life 
cycle, cyber risk factors, and spectrum of conflict. This analysis focused on the question posed 
by HAF/A4 related to the dangers posed by tampering attacks. To address this question, this 
research provides both an approach to examining cybersecurity risk in context and 
application of that approach to examine tampering attacks. The threads presented in Chapter 
4 applied the OCTAVE Allegro approach to illustrative cases to identify and prioritize 
cyber-tampering risks; however, a broader analysis is required to place these risks in context. 
In particular, the unique and dynamic nature of military operations and how they differ in 
competition and conflict requires focused, analysis-driven insight beyond traditional 
cybersecurity. Our mission risk criteria considered three elements: time to survive, time to 
recover, and units affected. The values for these metrics could be dramatically different in 
conflict as opposed to competition. Chosen mitigation actions should be viewed from a risk-
reward perspective, accounting for scope, effectiveness, and cost. 

Example: The analysis in Chapter 4 highlighted integrity-based attacks to information 
assets across a variety of actors, examining risks that spanned systems and networks. 
Linking these assets to mission-centric metrics focused attention on risks and mitigations 
with the greatest potential to disrupt key operations under specific scenarios. 

• Going forward, continue to evaluate cyber risks in context by implementing a process for 
considering how threats, vulnerabilities, and consequences to missions change as new systems, 
technologies, and information-handling methods are considered and implemented. Effective 
cyber posture must be developed and managed against organizational and technical concerns, 
considering the variety of operations from competition to conflict. Operating under the 
assumption that no system or collection of systems to support a mission can be made 
perfectly secure, USAF must continually evaluate cyber risk; assess it in context; and update 
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it relative to threats, vulnerabilities, and mission impact across systems, information assets, 
and mission objectives.  

Example: Threads 2 and 3 of the analysis in Chapter 4 provide an example of how cross-
functional cyber risk analysis processes can be employed and continuously analyzed to 
drive decisionmaking when adopting new technologies.   

• Employ best practices for executing risk-based processes, including the following: 

- Engage SMEs in workshop environments to better understand the value of information 
assets to the supply chain’s support to operational mission execution. Given the 
complexity of USAF supply chain operations in competition and additional challenges 
introduced in conflict, SMEs responsible for executing supply chain operations will be 
best suited to identify the most critical information assets and assist in prioritizing risk-
based security assessments that need to be accomplished.  

- Complement the current HAF/A4 RMF with a cross-functional approach. Life cycle-
focused, risk-based security engineering processes (such as OCTAVE or similar 
processes) complement existing efforts and provide decisionmakers with a more 
comprehensive understanding of cyber risk to mission. Such processes enable the 
consideration of both proactive and reactive measures that span policy, technicality, and 
personnel actions and can identify mitigation paths earlier in the life cycle, where they can 
be more effective and less costly. 

 
Example: Threads 2 and 3 highlighted risk calculations that were dependent on the 
specific RPA platform, vendor security practices, and platform configuration, each 
affecting information asset exposure and threat surface. Input on risk throughout the life 
cycle of technology adoption can inform system design and implementation and improve 
the scope, effectiveness, and cost-benefit ratio of specific security decisions. 
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Appendix A 

Annotated Bibliography of Select 
Demand Forecasting Research 

Demand Forecasting Methods 
Amirkolaii, K. Nemati, A. Baboli, M. K. Shahzad, and R. Tonadre, “Demand Forecasting for Irregular 

Demands in Business Aircraft Spare Parts Supply Chains by Using Artificial Intelligence (AI),” 
International Federation of Automatic Control-PapersOnLine, Vol. 50, No. 1, July 2017.  

In this article, Amirkolaii et al. applied an AI method, NN, to forecast irregular demand and 
measured its accuracy to mean square error. The authors found that there was low forecast 
accuracy in preexisting methods for irregular demand patterns, and they were unable to forecast 
demand because of unpredictable use of aircraft spare parts. The authors recommend using NN 
with 1 part/1 feature or 1 part/multiple features for the most accurate demand forecast.  

 
Atchley, Walter D., Dorothy M. Clark, Salvatore J. Culosi, Lori Dunch, Robert C. Kline, Thomas E. Lang, 

Randy L. Moller, Matthew R. Peterson, and Michael R. Pouy, Lifecycle Forecasting Improvement: Causative 
Research and Item Introduction Phase, Logistics Management Institute, Report DL920T1, November 
2010.  

Atchley et al. evaluates DLA inventory excess and shortfalls caused by demand forecasting and by 
policies for introducing new items. The authors found that forecast accuracy was not the only 
driver of inventory excess and shortfalls. For example, when new parts are introduced, these items 
most often have intermittent demand. As a result, services over-forecast new parts when they are 
first introduced. Rather than focus on DFA, Atchley et al. recommends improving the ability to 
forecast newly introduced items. The authors acknowledge that some shortfalls and excesses will 
always exist, but changes in operations might reduce their size.  
 

Babai, M. Z., A. Tsadiras, and C. Papadopoulos, “On the Empirical Performance of Some New Neural 
Network Methods for Forecasting Intermittent Demand,” International Journal of Imaging Systems and 
Technology Journal of Management Mathematics, Vol. 31, No. 3, July 2020.  

Babai, Tsadiras, and Papadopoulos evaluate the use of NN methods to forecast intermittent 
demand. As a benchmark, the authors deployed five alternative methods: single exponential 
smoothing, Croston’s method, Syntetos-Boylan approximation, Willemain’s method, and Zhou 
and Viswanathan’s method. For the NN approach, the authors used a method presented in 
Gutierrez et al. (2008). Each of these methods was applied to a collection of airline company 
parts. The authors found that Willemain’s method and Zhou and Viswanathan’s method 
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performed the worst in inventory efficiency and the NN method performed second best to single 
exponential smoothing.  
 

Bachman, Tovey C., Pamela J. Williams, Kristen M. Cheman, Jeffrey Curtis, and Robert Carroll, “PNG: 
Effective Inventory Control for Items with Highly Variable Demand,” Interfaces, Vol. 46, No. 1, 2015. 

In this article, Bachman et al. present PNG software, a tool developed by the authors to aid in 
decisionmaking for infrequent demand and frequent, highly variable demand. The software 
combines two methods, Peak Policy and Next Gen model (whose names combined are PNG). 
The software offers trade-offs in terms of wait time and on-hand inventory value. Within the 
software, the Peak Policy method provides a risk profile for a complete portfolio of parts. The 
Next Gen model uses a cost function to apply penalty factors, including backorders, inventory 
value, and annual buys. Similar to Peak Policy, Next Gen is only used for the population of parts. 
The software appeared effective at balancing costs while meeting the DLA director’s stated 
objective for a 90 percent fill rate.  
 

Baisariyev, M., A. Bakytzhanuly, Y. Serik, B. Mukhanova, M. Z. Babai, M. Tsakalerou, and C. T. 
Papadopoulos, “Demand Forecasting Methods for Spare Parts Logistics for Aviation: A Real-World 
Implementation of the Bootstrap Method,” Procedia Manufacturing, Vol. 55, 2021.  

Baisariyev et al. applies the Bootstrap method for forecasting spare part demand in commercial 
aviation. The Bootstrap method was selected from a taxonomy of forecasting methods. The 
primary methods used in aviation logistics included exponential smoothing, Croston’s method, 
Syntetos and Boylan approximation, modified Croston’s, and Bootstrap. Of these methods, the 
Bootstrap method had the best performance when compared using the mean absolute deviation, a 
scale-dependent accuracy metric. The Bootstrap method was found to provide accurate results 
with intermittent demand patterns but had lower performance with lumpy demand patterns.  
 

Brown, B. B., and M. A. Geisler, Analysis of the Demand Patterns for B-47 Airframe Parts at Air Base Level, 
RAND Corporation, RM-1297, 1954.  

In this 1954 research memo, Brown and Geisler assessed B-47 spare parts to observe possible 
Poisson distributions in demand. Demand for B-47 parts proved to be highly erratic, particularly 
for parts that were higher cost. The vast majority of items (458 of 470) analyzed had insufficient 
data to identify patterns in demand.  

 
Brown, Bernice B., Characteristics of Demand for Aircraft Spare Parts, RAND Corporation, R-292, 1956.  

Brown (1956) furthers analysis on B-47 airframe parts and identifies sporadic characteristics of 
demand. Most parts have low demand; one-third of parts have no demand, and three-fourths of 
parts have demand that is so low that using demand data will lead to bad predictions. The 
unpredictability of when demand occurs can be caused by future program changes, engineering 
changes, and changes to conditions of use. In addition to these factors, unpredictability can be 
attributed to challenges in analyzing demand, including a lack of data and a “lack of satisfactory 
systemization” of randomness in the demand for spare parts. To address these uncertainties, 
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Brown recommends an ample stock of low-unit-cost parts. For high-moving, high-cost parts, 
Brown recommends predicting demand with a probability distribution to determine stock. 
Alternatively, high-cost parts that are slow moving should be supplied as needed. Brown provides 
several recommendations to reduce the logistical burden of these high-cost, slow-moving parts, 
including reducing procurement lead times, resupply times, and repair cycle times. 

 

DeFrank, Joshua D., “A Condition Based Maintenance Approach to Forecasting B-1 Aircraft Parts,” Air 
Force Institute of Technology, March 3, 2017.  

In this master’s thesis, DeFrank applies condition-based maintenance to improve demand 
forecasting. When applied to the B-1 aircraft, the condition-based maintenance approach 
reduced demand forecasting error by 2.46 percent when compared with current approaches.   

 

Guo, Feng, Jun Diao, Qiuhong Zhao, Dexin Wang, and Qiang Sun, “A Double-Level Combination Approach 
for Demand Forecasting of Repairable Airplane Spare Parts Based on Turnover Data,” Computers & 
Industrial Engineering, Vol. 110, August 2017.  

Guo et al. introduces a double-level combination forecast model to improve demand forecasting 
for repairable spare parts. The double-level model incorporates two types of combination models: 
low-level combination and top-level combination. The authors found that the double-level 
combination model performed accurately when compared with a single-level combination model 
and a single-level model.  

 
Hyndman, Rob J., “Another Look at Forecast-Accuracy Metrics for Intermittent Demand,” Foresight, No. 4, 

June 2006.  

There are three types of measures commonly used to assess DFA for intermittent demand: scale-
dependent metrics, percentage-error metrics, and relative error metrics. Each of these metrics 
faces unique challenges for accurately assessing intermittent demand forecasts. First, scale-
dependent metrics cannot be compared with different demand series. Second, percentage-error 
metrics allow for comparisons, but their infinite measurements are not appropriate for 
intermittent demand. Last, relative error metrics are similarly not applicable for intermittent 
demand. In this paper, Hyndman introduces a fourth metric, scale-free error metrics. The mean 
absolute standard error allows for comparison between models and evaluation of the accuracy 
between demand series.  

 

O’Neal, Thomas R., Sortie-Based Aircraft Component Demand Rate to Predict Requirements, Air Force Institute 
of Technology, March 2020.  

In this master’s thesis, O’Neal identifies a method for improving DFA by using sorties in place of 
flying hours. The author applied this method to the F-16 and B-52 using a modified Poisson 
process and found that demand forecast errors were reduced by 15 percent.  
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Posadas, Sergio, Carl M. Kruger, Catherine M. Beazley, Russell S. Salley, John A. Stephenson, Esther C. 
Thron, and Justin D. Ward, “Forecasting Parts Demand Using Service Data and Machine Learning,” 
Logistics Management Institute, January 2020.  

Posadas et al. assesses the application of ML methods for forecasting demand of aircraft parts 
managed by DLA. The effectiveness of ML begins with data, a common challenge for demand 
forecasting. To forecast maintenance demands, the authors used part consumption data. In this 
analysis, the authors focused on generator converter units for the F/A-18 E/F. Although the 
effectiveness of ML on demand forecasting is limited by data issues, some ML methods can 
decrease the impact of data scarcity.  
 

Syntetos, Aris A., John E. Boylan, and J. D. Croston, “On the Categorization of Demand Patterns,” Journal of 
the Operational Research Society, Vol. 56, No. 5, August 25, 2004.  

In traditional demand forecasting, forecasters first categorize demand patterns. Next, analysts 
compare forecasting methods with error measures. In this paper, Syntetos, Boylan, and Croston 
recommended an analysis of the demand series as a first step in demand forecasting. This 
approach allows the demand patterns to be determined and defined by the forecasting methods’ 
performance rather than categorized arbitrarily. 
 

Van der Auweraer, Sarah, and Robert N. Boute, “Forecasting Spare Part Demand Using Service Maintenance 
Information,” International Journal of Production Economics, Vol. 213, July 2019.  

Most service maintenance parts have intermittent demand. Consequently, as availability 
increases, there is reduced investment in inventories. In this analysis, Van der Auweraer and 
Boute used the failures with the number of machines in the field to forecast demand and reduce 
inventory levels while meeting service needs. The authors found that while there is potential to 
improve forecasting, data availability presents a challenge.  

Reviews of Forecasting Methods 
 

Bacchetti, Andrea, and Nicola Saccani, “Spare Parts Classification and Demand Forecasting for Stock 
Control: Investigating the Gap Between Research and Practice,” Omega, Vol. 40, No. 6, December 2012. 

Bacchetti and Saccani used ten case studies to assess the gap between research and practice in 
spare parts management. Foundational to this analysis is a detailed review of spare parts 
classifications and forecasting methods. Through this analysis, the authors found that there was 
“little (if any) adoption of ad-hoc methods and techniques for spare parts management . . . the 
lack of integrated approaches . . . and a rather low level of awareness about how to perform 
managerial improvements” (p. 731).  
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Boylan, John E., and Aris A. Syntetos, “Spare Parts Management: A Review of Forecasting Research and 
Extensions,” International Journal of Imaging Systems and Technology Journal of Management Mathematics, 
Vol. 21, No. 3, November 12, 2009.  

Boylan and Syntetos reviewed the development of demand forecasting for spare parts. They 
categorized three types of strategies for improving demand forecasts present in the literature: pre-
processing, processing, and post-processing. Pre-processing methods include the demand pattern 
categorization between fast/slow and intermittent/lumpy. These methods evaluate the time 
between demand and the size of that demand. Processing methods to apply demand forecasting 
methods are the primary focus of demand forecasting research. Last, post-processing methods 
evaluate contributions made by adjustments made by a manager’s discernment. The authors 
highlighted the need for research in pre- and post-processing improvements rather than the 
primary focus on processing methods.  
 

De Gooijer, Jan G., and Rob J. Hyndman, “25 Years of Time Series Forecasting,” International Journal of 
Forecasting, Vol. 22, No. 3, 2006.  

In this review, de Gooijer and Hyndman presented research contributions to time series 
forecasting in the Institute of Forecasters. The authors categorized these contributions by the 
models used: exponential smoothing, autoregressive integrated moving average (ARIMA) 
models, seasonality, state space and structural models and the Kalman filler, nonlinear models, 
long memory, autoregressive conditional heteroskedasticity (ARCH)/generalized autoregressive 
conditional heteroskedasticity (GARCH) models, and count data forecasting. Finally, the 
authors presented research that combines these methods and the variety of accuracy measures 
used to assess demand forecast models.  
 

Pinçe, Çerağ, Laura Turrini, and Joern Meissner, “Intermittent Demand Forecasting for Spare Parts: A 
Critical Review,” Omega, Vol. 105, No. 1, July 2021.  

In this article, Pinçe, Turrini, and Meissner review demand forecasting for spare parts with 
intermittent demand. Demand forecasting methods are not easily compared because of the 
variation in performance measures resulting in a lack of standardization to determine 
performance benchmarks. Furthermore, analyses for forecasting methods often omit significance 
tests when appraising methods. The lack of significant testing limits the objective comparisons 
that can be made between methods. Finally, the authors also found that the role of judgment in 
the demand forecasting process is understudied and provides a research opportunity to 
understand how managerial expertise can improve inventory levels.   

 
Syntetos, Aris A., Mohamed Zied Babai, John Boylan, Stephan Kolassa, and Konstantinos Nikolopoulos, 

“Supply Chain Forecasting: Theory, Practice, Their Gap and the Future,” European Journal of Operational 
Research, Vol. 252, No. 1, November 2015. 

In this review, the authors state that a comprehensive review of supply chain management 
requires a full picture of supply chain echelons: manufacturers, wholesalers, retailers, and 
consumers. In addition to echelons, a supply chain analysis should include the products, 
locations, and periods associated with the supply chain. The authors reviewed literature for each 
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of these supply chain dimensions and evaluated the gaps between theory and practice. In this 
review, the authors found that practitioners and software manufacturers often lag behind 
theoretical advancements in each dimension.  
 

Van der Auweraer, Sarah, Robert N. Boute, and Aris A. Syntetos, “Forecasting Spare Part Demand with 
Installed Base Information: A Review,” International Journal of Forecasting, Vol. 35, No. 1, 2019.  

Van der Auweraer, Boute, and Syntetos reviewed literature on demand forecasting methods that 
use usage location information. Although other approaches to demand forecasting use historical 
data, installed base methods incorporate current usage information that links machines and 
maintenance policies to determine spare part demand. Although these methods are understudied 
compared with methods that use historical data, the authors found that research on installed base 
methods has increased over the past decade; 40 percent of identified articles were published 
within the past five years.  
 

Foundational Contributions to Inventory Management  
Chenoweth, Mary E., Jeremy Arkes, and Nancy Y. Moore, Best Practices in Developing Proactive Supply 

Strategies for Air Force Low-Demand Service Parts, RAND Corporation, MG-858-AF, 2010.   

USAF low-demand service parts present unique supply challenges. In their study, Chenoweth, 
Arkes, and Moore found that most USAF requisitioned parts (three in four of 60,000) had fewer 
than six annual requisitions. These low-demand parts often originated from USAF logistics 
centers, and more than half of low-demand parts originated from two USAF logistics center 
locations. The most-expensive parts are engines, turbines, and related components. The suppliers 
for low-demand parts are similarly concentrated. For example, eight of the top ten suppliers for 
all USAF parts are also present in the top ten suppliers for low-demand parts. These low-
demand parts also have limited overlap with parts identified as MICAP or Awaiting Parts. These 
characteristics of low-demand parts make it difficult to improve supply chain strategies. 
Therefore, the authors recommended supply chain strategies in the design and production 
phases.   
 

Hodges, James S., and Raymond A. Pyles, Onward Through the Fog: Uncertainty and Management Adaptation 
in Systems Analysis and Design, RAND Corporation, R-3760-AF/A/OSD, 1990.  

Hodges and Pyles evaluates the current state of policy analysis and finds that previous analyses 
have critically omitted or mishandled uncertainty. There are two types of uncertainty that should 
be considered: state of the world uncertainty and statistical uncertainty. Although studies have 
included statistical uncertainty in their evaluations, statistical uncertainty is not often evaluated. 
One example of a study that incorporates state of the world uncertainty is Coupling Logistics 
Operations to Meet Uncertainty and the Threat. 
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Appendix B 

Bot Taxonomy 

Lebeuf and colleagues characterized a bot according to three primary dimensions: environment, 
intrinsic (how the bot functions), and interaction.161 Within each of these dimensions, numerous 
attributes describe all the key information we need to know about a bot.  

Environment Dimension 
The environment dimension describes the surroundings in which the bot operates. This refers to 

the machine or server that the bot inhabits, the network or networks that the bot may access, and the 
data systems that the bot manipulates. The environment can be described by type, scope, closure, 
dynamism, predictability, permanence, and population, defined in Table B.1. 

Table B.1. Bot Characteristics in the Environment Dimension 

Characteristic Potential Values Description of Value 

Type Stand-alone The bot is hosted independently but can access 
platforms in the same manner as users. 

Platform The bot can be hosted independently or through 
the platform but accesses the platform without a 
user. 

Scope Bounded The environment is limited with respect to its 
size. 

Unbounded There are no limits on size. 

Closure Closed Access to the environment is limited by 
restrictions on access. 

Open An open environment allows free access without 
restrictions. 

Dynamism Static All changes in the environment are the result of 
the bot’s actions. 

Dynamic A dynamic environment changes as a result of 
actions outside the bot’s control. 

 
161 Carlene Lebeuf, A Taxonomy of Software Bots: Towards a Deeper Understanding of Software Bot 

Characteristics, master's thesis, University of Victoria, 2018; and Lebeuf et al., 2019. 
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Characteristic Potential Values Description of Value 

Permanence Episodic The actions only temporarily affect the 
environment’s state. After the current interaction, 
the environment returns to its previous state.  

Sequential The actions permanently change the 
environment’s state and could affect future 
actions. 

Population Singular The bot is the only member of the population. 

Countable The population can be reasonably counted. 

Uncountable The population cannot be reasonably counted. 

Diversity  Homogeneous All members of the population are the same type. 

Heterogeneous A heterogeneous population has a diverse set of 
inhabitants. 

 
The type attribute describes the setting (often a machine or system) that the bot inhabits, 

participates in, or accesses. This can be stand-alone, where the bot is tied not to a specific platform but 
to a local machine. Otherwise, the type is platform, where the bot can be hosted on a server. Examples 
of platforms include the following:  

• computer systems (networks, operating systems, and databases) 
• social platforms (Facebook) 
• ambient platforms where users use voice commands (Alexa and Siri). 

Scope refers to the size of the bot’s environment, which can be bounded when the environment is 
limited with respect to its size (such as the capacity of the data systems that the bot accesses). Scope 
can also be unbounded when a bot is scraping the internet (such as Google results) or may explore 
networks at will. Closure indicates who can access the bot’s environment. Closure can be described as 
either closed when access to the environment is limited (such as accessing a restricted system or 
housed on a laptop with a login) or open when others freely access the environment (such as Google 
and news sources). Dynamism refers to the degree to which the bot’s environment changes, which can 
be either static, where all the changes in the environment can be attributed to the bot’s actions, or 
dynamic, where changes in the environment can also be attributed to other users or bots. For instance, 
if a bot produces a slide deck and that was the only thing that could change in the environment, the 
environment would be static. If other things can change as the result of others’ actions (such as when 
a bot accesses a data system that is also used by others), the environment is dynamic. 

Permanence refers to how long the effects of the bot’s actions remain. This can be described as 
episodic, where the actions performed only in the environment temporarily affect the environment. 
When an episodic bot terminates, the environment returns to the same state as before the bot ran. 
Alternatively, sequential bots permanently change the environment and may affect future bot actions. 
This includes creating, moving, and changing files; sending emails; and manipulating data. 
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Finally, population describes the active entities (humans or bots) within the environment. 
Population can be further broken into cardinality and diversity. Cardinality refers to the number of 
other entities in the environment, which can be described as singular when the bot is the only member 
of the population, countable when the population can be reasonably counted, or uncountable when the 
population is so large that it cannot be reasonably counted. Diversity refers to the composition of the 
population, which is either homogeneous when all members of the population are the same type or 
heterogeneous when the environment includes diverse types of users and bots. A heterogeneous 
environment can refer to incorporation of both human users and bots, leveraging users from different 
roles, privileges, and purposes or including bots that perform different actions.  

Intrinsic Dimension 
The intrinsic dimension describes properties belonging to the bot itself, where the bot’s developer 

has complete control over each attribute within. These attributes include knowledge, reasoning, 
adaptability, goal orientation, delegation, specialization, anthropomorphism, and life cycle. Several of 
these characteristics apply to bots that leverage AI. As illustrated in Table B.2, many of these 
attributes can be broken down further. 

Table B.2. Bot Characteristics in the Intrinsic Dimension  

Characteristic Potential Values Description of Value 

Knowledge 

Memory Long-term The bot can store and access past events and actions. 

Short-term The bot can temporarily store and access the current 
context, events, and actions. 

Future The bot can store predictions of future events and actions. 

Source Encoded The bot’s knowledge is directly encoded by the 
programmer or creator. 

Supplied The bot’s knowledge is provided by something in its 
environment. 

Learned The bot’s knowledge is inferred from its environment. 

Reasoning 

Mechanisms Scripted The bot responds to predefined stimuli with 
preprogrammed responses. 

Planning The bot does not have a predefined script mapping inputs 
to outputs but instead makes decisions based on the 
situation and its current knowledge. 

Mixed The bot uses a combination of planned and scripted 
reasoning mechanisms. 

Agency None The bot has no agency if it requires an external party to 
approve actions before the bot can perform them. 
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Characteristic Potential Values Description of Value 

Complete The bot does not require permission to carry out the tasks 
required to realize its goals. Complete agency is often 
described as autonomy. 

Predictability  Stochastic Results of the bot’s reasoning mechanism appear as 
though they are random.  

Deterministic Results of the bot’s reasoning mechanism are the same 
when provided with the same inputs and conditions. 

Mixed Some input types are stochastic while others are 
predictable.   

Visibility None All of the bot’s decisions or actions are hidden.  

Transparent The bot’s decisions or actions leave visible traces when the 
bot is not actively trying to make its processes visible. 

Visible The bot actively works to make its decisions or actions 
visible. The bot creates additional artifacts for the sole 
purpose of providing visibility into its decisions or actions. 

Reactivity Synchronous The bot responds at the same time or very shortly after the 
stimuli is perceived. 

Mixed The bot uses a mixture of synchronous and asynchronous 
response times.  

Asynchronous The bot responds to the stimuli after some time has 
passed.  

Scheduling Single tasked The bot is single tasked if it can only handle one stimulus 
or task at a time. 

Multiple The bot is capable of handling more than one task at 
once. Multi-task bots process tasks based on the order in 
which they arrive or according to some prioritization 
metric. 

Adaptability 

Constraints Constrained The bot is able to adapt its dimensions, but it is restricted 
by scope, extent, or activity. 

Open The bot is freely able to adapt its behavior. 

Source Internal The bot’s adaptation process is triggered from within the 
bot itself. 

External The bot’s adaptation process is triggered by something in 
the bot’s environment.  

Guidance Undirected The adaptation outcome is not directly shaped or 
influenced by a source. Undirected adaptation is guided 
from within (e.g., from its programming), and the bot itself 
controls the adaptation process.  

Directed The bot’s adaptation is directed if its adaptation outcome 
is shaped by the source’s actions.  

Goal orientation 
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Characteristic Potential Values Description of Value 

Complexity Low The bot performs simple tasks. 

High The bot performs a complex workflow, drawing from 
multiple data sources or applying complicated analysis. 

Criticality Low The bot’s tasks are low risk, are less important, or entail no 
security concerns. 

High The bot’s tasks are high risk, are very important, or entail 
security risks. 

Attainability Achievable The bot’s goals have a well-defined end state that can be 
feasibly reached. 

Homoeostasis The bot’s goals are never reached. 

Explicitness Explicit The bot’s goals are clearly defined with no need for 
interpretation. 

Implicit The bot’s goals are ambiguous. 

Source Internal The bot’s goals come from the bot. 

External The bot’s goals come from external users, bots, or systems. 

Delegation None The bot does not have the authority to act on behalf of 
others.  

Partial The bot has authority to act on behalf of the user but does 
not pretend to be the user. 

Complete The bot has the authority to both act on behalf of and 
pretend to be the user. 

Specialization Generalist bot The bot supports a wide variety of tasks and directs users 
to the appropriate external resources. 

Specialist bot The bot is designed to perform specific tasks in a limited 
domain. 

Anthropomorphism 

Name None The bot has no name. 

Representative The bot takes its name from the company or service it 
provides. 

Unique The bot has been given its own identifiable name. 

Embodiment None The bot has no visible form. 

Embodied The bot has a visible form (e.g., logo, avatar). 

Age None The bot has no age. 

Static The bot has an age that does not increase. 

Dynamic The bot has an age that increases over time. 

Gender None The bot has no identifiable gender. 

Gender The bot has an identifiable gender. 

Ethnicity None The bot has no ethnicity. 
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Characteristic Potential Values Description of Value 

Ethnicity The bot has an identifiable ethnicity. 

Profession None The bot has no profession. 

Profession The bot has an identifiable profession. 

Personality None The bot has no personality. 

Personality The bot was intentionally programmed with a personality. 

Emotions None The bot has no visible emotions. 

Superficial The bot only displays emotions when interacting with 
others but emotions have no effect on behavior. 

Logical The bot displays emotions, and emotions have an impact 
on behavior. 

Life cycle 

Lifespan Terminating The bot has a terminating lifespan if it eventually stops of 
its own accord. 

Transient The bot is running sometimes and not other times. 

Continuous The bot never self-terminates. 

Creation Human The bot was created by a human.  

Bot The bot was created by another bot.  

System The bot was created by another system. For example, 
many bots in online games are spawned by a system. 

Reproduction None The bot is unable to create other bots. 

Reproductive The bot is able to create other bots. 

 
The knowledge attribute describes what the bot understands or information the bot has 

immediately, which can be further described by its memory and source. A bot’s memory can be 
characterized as long-term when the bot is able to store and access past events. This memory could 
include log files of past events that shape how the bot behaves in the future. A bot has short-term 
memory when it is able to temporarily store and access the current context only, often in short-term 
memory or a temporary file. A bot’s memory is designated as future when it can store and access 
predictions of future events. The source attribute determines where the bot’s knowledge originates. 
The source may be encoded if the bot’s knowledge is programmed directly into the bot’s code by the 
developer, supplied if the bot’s knowledge is provided by something in its environment (like a file or 
data system), or learned if the bot’s knowledge is inferred by surveying the environment.  

The reasoning attribute refers to a bot’s capacity to apply logic to achieve its goals. This broad but 
crucial category can be further broken into mechanisms, agency, predictability, visibility, reactivity, 
and scheduling. Mechanisms describe the way that a bot processes inputs or generates outputs. This 
processing can be scripted when the bot responds to a set of predefined stimuli with a corresponding 
set of preprogrammed responses, planning if it makes decisions based on the situation and its current 
knowledge, or mixed when the bot uses a combination of planned and scripted mechanisms. 
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Agency describes a bot’s ability to perform its tasks without interference. For instance, a bot 
might be required to get clearance or permission from an external party. Therefore, agency is either 
none if the bot requires an external party to approve actions or complete if the bot does not require 
permission to carry out the tasks required to realize its goals. Complete agency is also called 
autonomy. 

Predictability describes the degree to which the bot’s actions are deterministic. Predictability can 
be characterized as stochastic where the results of the actions performed are random or follow a 
statistical distribution, deterministic where the results of the bot’s actions can be fully predicted, or 
uncertain where the results of the bot’s actions can be partially predicted. RPA bots are deterministic 
when there is no randomness in behavior (i.e., the same inputs will yield the same outputs every 
time). 

Visibility signifies the degree to which a bot makes its decisions or actions visible to others. This 
can be described as none when all its actions are hidden, transparent if its actions leave visible traces 
when the bot is not actively trying to make its processes visible, or visible when the bot actively works 
to make its actions visible. Obviously, bots that lack visibility pose a threat to security because 
changes to the environment cannot be attributed to the bot. Many RPA bots are considered 
transparent, where a user can see the bot acting, but no log is created to document actions. A visible 
bot might create such additional artifacts as log files for the sole purpose of documenting changes to 
the environment. However, when data change often, artifacts can create latency problems if the 
information in the artifact becomes obsolete quickly. A better practice is to locate a bot and data 
within a cloud-based system to do linkages. 

Reactivity refers to the time the bot takes to respond to stimuli, which can be synchronous if the 
bot responds at the same time (or very shortly after) the stimuli are perceived, asynchronous if the bot 
responds to the stimuli after some time has passed, or mixed if the bot uses a mixture of synchronous 
and asynchronous response times.  

Scheduling describes the bot’s strategy for dealing with multiple inputs or outputs that need to be 
reasoned about. A single-tasked bot can only handle one stimulus or task at a time, whereas a multiple-
tasked bot is capable of handling more than one stimulus or task at once. Multiple-tasked bots can 
perform tasks based on the order in which they arrive or a prioritization metric. 

Adaptability indicates a bot’s ability to modify its own functionality at runtime, where an adaptive 
bot can change some behaviors at runtime and a nonadaptive cannot. Adaptation usually involves 
leveraging AI to survey and learn from the environment before deciding what to do. Deterministic 
RPA bots are nonadaptive. If a bot is adaptive, then it can be further described by constraints, source, 
and guidance.  

The adaptation of constrained bots is restricted by scope or activity, providing safeguards to 
ensure the bot functions well within its core responsibilities. Alternatively, an open bot is freely able 
to adapt its behavior without restrictions. This is dangerous for several reasons, which will be 
discussed later in this appendix. Source refers to the origin of a bot’s adaptation. This can be internal if 
the bot’s adaptation process is triggered by programming within the bot itself or external if the bot’s 
adaptation process is triggered by something in the bot’s environment, such as the existence or 
configuration of files or data. 
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Guidance signifies whether the bot had some form of support during its adaptation process. 
Guidance can be directed when the bot’s adaptation outcome is shaped by such a source as an external 
force (user or bot), algorithm, or document. Otherwise, the bot’s guidance is undirected. Examples of 
directed adaption include configuration, in which an external force directly manipulates the bot’s 
behaviors; subscription, in which an external force adds or removes behaviors; and reinforcement, 
which either rewards or punishes the outcome of the bot’s adaptation to influence future adaptations. 

Goal orientation can be loosely defined as a future state that the bot is working toward. This 
future state could include a finished analysis, a completed document, or a manipulated dataset. Goal 
orientation can be further broken down into complexity, criticality, attainability, explicitness, and 
source. Some of these categories are necessarily ambiguous because the taxonomy is meant to apply 
generically to all bots. Complexity refers to the complications surrounding a bot’s goals, which can 
simply be labeled low or high. Low-complexity goals might include simple extraction of data, 
completion of a template, or submission of a requisition. High-complexity goals include sophisticated 
analyses involving multiple complex datasets.  

Criticality represents the level of importance or urgency associated with the goal, which can also 
be labeled low or high. A bot with low criticality performs low-risk work that is not urgent and does 
not inform major decisions, whereas the goals of a highly critical bot are necessary to operations and 
inform pivotal decisions. Attainability describes the bot’s ability to complete or achieve its goal. 
Attainability can either be achievable, where the goal can be feasibly met, or homeostasis, where the 
goal is never met. Homeostasis refers to bots that are running perpetually.  

Explicitness indicates the degree to which the bot’s goals are explicitly defined, which can be 
implicit when the goal is ambiguous or relies on judgment and explicit when the goal is clearly defined 
with no uncertainty or need for interpretation. Source describes what triggered a new instance of a 
goal behavior, which can be internal or external. Internal signifies that a bot’s goals are programmed 
into it. External goals are provided to the bot from a user, another bot, or something else in the 
environment (e.g., a file). 

Delegation refers to the bot’s authority to act on behalf of others. This can be described as none 
when the bot does not have the authority to act on behalf of others, partial if the bot has the authority 
to act on behalf of the user but does not pretend to be the user, or complete if the bot has the authority 
to both act on behalf of and pretend to be the user. Many of the bots deployed within USAF are 
complete, where it is impossible to tell the difference between actions of the bot and the user. 

Specialization is the degree to which the bot focuses on a specific area or task. A generalist bot 
supports a wide variety of tasks, while a specialist bot is designed to perform specific tasks in a limited 
domain. Most RPA bots are specialist bots, performing the same specific task repeatedly.  

Anthropomorphism signifies the degree to which the bot is given such human-like traits as a name, 
age, gender, ethnicity, physical embodiment, profession, personality, and even emotions. Examples of 
anthropomorphized bots include Siri and Alexa, who were given voices of adult females. When a chat 
bot is given a physical avatar that interacts with users, the bot may be given a rough age, an ethnicity, 
a gender, etc. Bots that show emotions, such as bots found in some video games, typically leverage AI. 

Life cycle refers to the various phases that the bot goes through in its life, which can be further 
broken into lifespan, creation, and reproduction. Lifespan is the length of time that the bot would 
have run if left completely alone. Lifespan can be terminating if the bot eventually stops of its own 
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accord, transient if it passes in and out of existence, or continuous if the bot never self-terminates. Bots 
that act on a schedule would be considered transient, and bots that constantly scrape data are 
continuous.  

Creation describes the way in which the bot was brought to life, which can be human when a 
human developer creates the bot, bot when the bot was created by another bot, or system when the bot 
was created by another system. For example, many bots in online games are spawned by a system. 
Finally, the reproduction attribute describes the ability of a bot to spawn other bots, which can be 
labeled none or reproductive. 

Interaction Dimension 
The third dimension is interaction, which describes the rules governing how a bot engages with 

different entities in its environment. The interaction dimension can be broken into the following 
attributes: access, sense, act, communicate, initiative, robustness, and mobility. The potential values 
for these characteristics are described in Table B.3. 

Table B.3. Bot Characteristics in the Interaction Dimension 

Characteristic Potential Values Description of Value 

Access None The bot may not access any of its environment. 

Partial The bot may access a subset of its environment. 

Complete The bot may access all of its environment. 

Sense Non-sensing The bot does not perceive any external stimuli in its 
environment. 

Sensing The bot perceives stimuli in its environment with 
sensors. 

Act Non-acting The bot does not try to act on or make changes to its 
environment. 

Acting The bot tries to act on or make changes to its 
environment. 

Communicate 

Disposition Antagonistic The bot attempts to undermine others. 

Competitive The bot acts in favor of its own self-interests. 

Indifferent The bot is unaware of the needs of others. 

Cooperative The bot coordinates actions with others. 

Benevolent The bot helps others, even when contrary to its own 
goals. 

Veracity Untruthful The bot deceives others. 

Mixed The bot exhibits both deceiving and truthful behaviors. 

Truthful The bot does not attempt to deceive others. 
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Characteristic Potential Values Description of Value 

Cardinality One-one The bot interacts with one individual at a time. 

One-many The bot is capable of interacting with multiple users 
simultaneously. 

Many-many The bot is capable of interacting with many users while 
they are also interacting among themselves. 

Directionality One-way The bot is capable of receiving inputs from or sending 
outputs to a user. 

Two-way The bot is capable of both receiving inputs from and 
sending outputs to a user. 

Directness Indirect The bot communicates with others through mediators, 
nonmessage interactions, or artifacts. 

Direct The bot communicates with others through direct 
messages or requests. 

Language capability  None The bot is not able to use human language. 

Keywords The bot communicates using short, preprogrammed 
phrases. 

Natural language The bot is able to communicate with NLP (e.g., 
chatbots). 

Conversation The bot can engage in meaningful dialogue. 

Initiative Reactive The bot initiates actions in response to a specific 
stimulus. 

Proactive The bot is proactive to control the situation rather than 
responding to stimuli. 

Robustness 

Error prevention  Bot The bot is responsible for preventing errors in the 
inputs it is receiving.  

User The bot relies on users to prevent errors in inputs. 

Error correction  Bot The bot is responsible for correcting errors in the inputs 
it receives. 

User The bot relies on the user to correct errors and provides 
the user with a way to correct information. 

 
The access attribute simply refers to the degree of freedom given to the bot when accessing the 

systems, files, and data in its environment. Values for access are none if the bot is not allowed to 
access any of its environment, partial if the bot is allowed to access a subset of its environment, or 
complete if the bot is allowed to access all of its environment. Many bots are restricted when they can 
access a subset of a server or data system.  

The sense attribute signifies the degree to which the bot can perceive environmental stimuli. A 
bot can either be sensing when it proactively seeks to perceive stimuli in its environment or non-
sensing when it does not. Bots that wait for a user to hit run are non-sensing. Examples of sensing bots 
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include bots that clean data when the data enter a repository or bots that document purchases after 
they are submitted. 

The act attribute represents the bot’s ability to act on or make changes in its environment. An 
acting bot makes changes to its environment, creating, moving, or manipulating files or data, while a 
non-acting bot does not.  

Generally associated with AI bots, the communicate attribute refers to the degree to which the bot 
can have meaningful interactions with others. A communicative bot interacts with others in its 
environment, and a noncommunicative bot does not. The communicate attribute can be further 
broken down into disposition, veracity, cardinality, directionality, directness, and language capability. 

Disposition describes a bot’s willingness to help, perform actions for, or share resources with 
others in its environment. A bot’s disposition could be antagonistic if it purposefully inconveniences 
others; competitive if it acts toward its own self-interests; indifferent if it is unaware of the needs of 
others (inadvertently or by choice); cooperative if it coordinates its efforts with others, or benevolent if 
it always helps others in its environment, even if doing so is detrimental to its own goals or best 
interests. 

Veracity refers to how truthful the bot is during communications. An untruthful bot intentionally 
deceives, a truthful bot does not deceive, and a bot that is mixed is both deceptive and truthful.  

Cardinality in the interaction dimension represents the number of users that the bot can interact 
with simultaneously. Cardinality can be designated one-one if the bot can only interact with one 
individual at a time, one-many if the bot can interact with many users at the same time, and many-
many if it can interact with many users while they also interact among themselves.  

Directionality determines whether the bot can receive inputs or send outputs to a user. One-way 
directionality means a bot is only capable of receiving inputs from or sending outputs to a user, but 
not both. Two-way directionality means it is capable of both receiving inputs from and sending 
outputs to a user. Directness describes the way the bot communicates with others in its environment, 
where a bot is described as indirect when it communicates through mediators or nonmessage 
interactions and direct when it communicates through direct messages or requests.  

Language capability signifies the bot’s ability to communicate using human language, where values 
may be none, keywords, natural language, or conversation. Initiative is related to the bot’s ability to sense 
stimuli in its environment, reason about the changes it detects, and act. A bot’s initiative can be 
described as reactive when it initiates actions in response to a specific trigger in its environment or 
proactive when it takes action to control the situation.  

Robustness signifies how well a bot handles errors, which can be further broken into error 
prevention, error discovery, and error correction. Error prevention includes strategies that a bot uses 
to reduce or prevent errors when receiving inputs from users. These strategies can be described as bot 
when the bot is responsible for preventing errors in the inputs it is receiving and user when the bot 
relies on users to implement preventative processes. Error discovery describes strategies that the bot 
uses to detect errors in the inputs it has received, where values are also bot when the bot is responsible 
for discovering errors in the inputs it receives and user when the bot relies on users to detect errors. 
Error correction refers to the strategies that the bot uses to recover from detected errors in the inputs 
the bot has received, where values can be bot when the bot is responsible for correcting errors in the 
inputs it receives and user when the bot relies on the user to correct errors. 
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Summary  
By using the taxonomy during the course of bot design, USAF can better understand and 

document the primary characteristics of a bot. Although most developers have a process for 
describing a bot prior to its development, a full taxonomy can raise questions for the bot’s use that 
might not have been previously considered. Without a full taxonomy, HAF/ A4L could have an 
incomplete picture of the impact a bot will have on systems and other users, which could cause 
conflicts with other systems or could introduce additional risks. The information gathered through 
the process of applying this taxonomy could inform cyber vulnerability analysis highlighted in 
Chapter 4.   
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Appendix C 

Cyber Tampering Analysis Data 

Accompanying this report are the worksheets used in the analysis of the three threads in Chapter 
4. This appendix describes these worksheets and provides necessary background to understand the 
OCTAVE Allegro process as employed. These workbooks were developed and customized for the 
augmented version of the process, with the input and output from each step linked to feed the 
requisite input values for other steps. 

For each workbook, the naming convention employed consisted of the OCTAVE Step (“SX”), a 
description of the content, and the related OCTAVE worksheet (numbered 1 to 10). Threads 1 and 
2 (AllegroWorksheets-Thread1-FINAL.xlsx and AllegroWorksheets-Thread2-FINAL.xlsx) 
contain each of the worksheets below. Thread 3 (AllegroWorksheets-Thread3-FINAL.xlsx) drew 
from these threads, resulting in minor changes noted in the sections below. 

1. Sheet 1 [S1 Risk Mgmt, Priority (1–7)]. This sheet captures the stakeholder inputs to the 
identified mission risk categories and space for stakeholder rating. This sheet is the same for 
each thread. 

2. Sheet 2 [S2 Crit Asset Summary (8)]. The purpose of this sheet is to specify and detail the 
information assets that form the basis for the analysis. The following fields were used: 

a. Asset: The information asset (by name) 
b. Rationale for Selection: The reason behind identifying that asset 
c. Description: More-detailed information on the nature of the asset 
d. Owner: The owner of the asset; for our analysis, this was largely deemed not 

applicable to the analysis 
e. Security Requirements: Captures the stakeholder evaluation of the relative 

importance of each security requirement: confidentiality (C), integrity (I), availability 
(A). For these analyses, each information asset was rated highest for integrity (“I”) 
because of the focus on tampering attacks. Additionally, the team sought a risk-
neutral stance with an equal number of high and low ratings among the assets. 

f. Most Important Requirement/Rationale: A brief explanation supporting the security 
focus. 

3. Sheet 3 [S3 Risk Env Maps (9a, b, c)]. A listing of the information containers (technical, 
physical, and people), internally and externally, involved with the information life cycle of the 
information assets listed on Sheet 2. A notes column was added to supply additional details 
where useful to the execution of the analysis. 

4. Sheet 4 [S4–6 Misuse Summary]. This worksheet summarizes the misuse case diagrams and 
misuse descriptions to begin the process of creating candidate risks for analysis, covering 
aspects of Steps 4, 5, and 6 in the process. The sheet contains the following columns: 
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a. Case: A unique identifier for each information asset-misuse actor-misuse path 
combination; used for reference 

b. Information Asset: The information asset affected by the misuse case 
c. Description: The misuse case description 
d. Dependency: Any misuse case (or, in the case of insiders, threat actor) that enables 

the primary misuse case 
e. Path: Variations (extensions) on the primary or dependency misuse case that present 

variations 
f. Justification/Assumptions: Supporting information related to the potential risk 
g. Consequence: The results of the misuse case, articulated in the language related to 

the risks identified in Step 1 (Sheet 1). 
Items that mapped to preexisting misuse cases were removed from consideration when the risk 

tables were developed (Step 5). These items have a gray background. 

5. Sheet 5 [S58 Info Asset Summary (10)]. Complementing Sheet 4, this portion of the 
analysis supports Steps 5, 6, and 8 by linking the potential risks with their threat and 
consequence, leading to the development of the risk pools and supporting analysis of 
mitigations. The following fields are employed: 

a. Information Asset: The information asset related to this risk 
b. Area of Concern: The misuse case 
c. Means: The combinations of dependencies and paths for a given misuse case 
d. Security Reqts: The security concern affected (C, I, A). For each misuse case and 

information asset, only integrity (“I”) cases were considered in this analysis. 
e. Threat Rankings/Threat Totals: The next four columns represent the stakeholder 

assessment of risk against a set of actors: 
i. Low capability—Low focus: Actors that constitute attack “noise,” who do not 

possess significant means or are not targeting the A4 community. 
ii. Mixed capability and skill: Actors that may possess either skill or focus, but 

not both. This could represent criminal or ideological elements. 
iii. High capability—High Focus: This is the traditional “advanced persistent 

threat” threat actor, with both means and the intent to attack the A4 
community. 

iv. Insider: This considers the unique probabilities that an actor without 
authorization but with virtual or physical access might enjoy. Note that this 
can include such nonmalicious intention as accidental data deletion. 

These values are summarized into an overall threat level, which is segmented into 
low-medium-high relative risk. The totals for each assignment of probability were 
tracked in the total to follow risk profiles, as described in Chapter 4. 

f. Consequence Rank, Threat × Consequence, and Risk Pool: The values resulting 
from the analysis of Sheet 6 (Step 7) are linked here, allowing the calculation of the 
overall risk value (threat × consequence) and assignment into the risk pool. 

g. Concerns: Any assumptions or information useful to the interpretation of the values 
assigned was recorded here. 
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h. Notes: External references and commentary captured during the analysis. For Thread 
3, analysis of risk developed in Threads 1 and 2 was employed to drive the analysis. 
Therefore, the version of this sheet for Thread 3 focuses on mapping the assets and 
misuse cases between threads to drive the selection of risks in the next step. 

6. Sheet 6 [S7 Risk Analysis]. Step 7 of the process brings together the risk measurement 
criteria identified in Step 1 (Sheet 1) with the consequence information articulated during 
Step 6 (Sheets 4 and 5) to derive the consequence values. These values are then employed in 
Sheet 6 as part of the risk value calculation and pooling. Sheet 6 captures the following: 

a. Information Asset: In OCTAVE Allegro, risk consequence is driven by information 
asset. 

b. Consequence: A description of the consequence resulting from the undermining of 
the identified risk metrics. This description should relate to the risk measurements 
identified in Step 1 and the misuse case arguments made in Step 4. 

c. Risk Score: Each information asset is scored high-medium-low against the risk 
considerations identified in Step 1, weighted according to their ranking. This results 
in an overall risk score. Once again, the number of each relative ranking is tracked to 
provide the analyst with insight into the risk posture; our analysis sought a risk-
neutral posture for this step. 

Thread 3 employed risks derived from the analysis conducted in Threads 1 and 2. 

7. Sheet 7 [S8 Mitigation Strategy]. This complex sheet captures key elements generated on 
other sheets, serving as the primary outcome of the analysis: 

a. Risk Pool: Establishes values for segregating risks into pools for consideration 
b. Mitigation Approach: Identifies the risk action to be taken for each risk. The same 

approach matrix was employed for each thread, with mitigation actions only 
identified for risks in Pools 1 and 2 (to limit the scope of the analysis). 

c. Pool 1, Pool 2/High, and Pool 2/Low risks: Risks in Pools 1 and 2 are listed, along 
with the number and percentage for each risk pool. Relevant asset, threat, and path 
are listed for each risk. In addition: 

v. Potential mitigations that might apply to each risk are listed by letter. A table 
on the left of the sheet (“Mitigations”) lists the total risks of each mitigation. 

vi. The associated row number from Sheet 6 is listed, for reference. 
d. Mitigation Effects: To support analysis of each risk and mitigation pairing, a table to 

the right of the risk pools lists anticipated effects of each paired mitigation (listed by 
letter) on the residual risk (“R”) and the change in probability of the risk (“L”) for 
each mitigation mapped to that risk. These are summarized at the top by listing the 
average and total probability reduction for each potential mitigation.  

8. Sheet 8 [S8 Mitigation Approaches]. The last portion of the analysis supports the 
identification and description of the mitigations used in Sheet 7. This table lists identified 
potential mitigations, assigning a letter (A–Z) to each, along with the following: 
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a. Control ID: The NIST SP 800-53 rev. 5 control associated with the mitigation. This 
is not exhaustive; some controls overlap. 

b. Mitigation: A description of the mitigation 
c. Mitigation Type: An indication of the nature of the mitigation (e.g., technical, 

procedural) 
d. Information Asset Affected: A list of the information asset that may be affected by 

the proposed mitigation 
e. Cons Score Change: Any change in the consequence score brought on by the 

mitigation 

f. Path(s) Affected: The misuse case paths affected by the proposed mitigation. 
g. Residual Risk, Threat Score, and Projected Residual Risk: These columns mirror the 

scoring columns in Sheet 6 but are intended to capture changes based on the 
mitigation by incorporating the “Cons Score Change” and an updated threat score. 
Note that this is listed as “no higher than” because, for some risks, mitigations may 
not reduce these values beyond their originally derived values. 

h. Cost: This column captures a very rough cost estimate equivalent to high-medium-
low ($$$, $$, $). This is not a precise estimate but is intended to help decisionmakers 
differentiate between more and less expensive mitigation options. 

i. Negatives: All mitigations come with trade offs (including some amount of increased 
cost). This column captures any negatives identified as part of the analysis to support 
decisionmaker considerations.  

j. Assumptions: Most mitigations in this analysis were described at a high level to 
support the intention of evaluating a class of attacks, leaving room for variations in 
implementation. Details that would affect the scoring of mitigations were recorded 
here. 

9. Sheet 9 [Data]. This sheet contains the data used to generate the validated lists employed in 
other sheets. 
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Appendix D 

OCTAVE Allegro Details 

This appendix provides further information on the rationale and motivation behind the selection 
of OCTAVE Allegro and details some of the benefits and limitations discussed in Chapter 4. 

Comparison with Other Approaches 
As is the case in security engineering generally, the practice of threat modeling is an evolving 

space with active research. As cybersecurity approaches continue to mature, approaches in this space 
tend to have three different points of emphasis:162 

• Focus on assets. Asset-focused methodologies focus on attacker targets and the means by 
which those targets are accessed. Methods in this category include enumeration of sensitive 
information (e.g., passwords, personal information) and the application of concepts like the 
CIA triad (confidentiality, integrity, availability) to identify concerns.  

• Focus on attacks. Attacker-focused approaches are popular because of their tangible nature, 
outlining specific actions. Outlining specific actions can be done using personas (idealized 
attackers) or, as is increasingly common, using observed attack methods or known 
intelligence. Although these methods benefit from their realism, they can be retrospective and 
limiting when considering broad issues. Microsoft’s STRIDE (spoofing, tampering, 
repudiation, information disclosure, denial of service, escalation of privilege)163 pneumonic is 
a popular method to focus on types of attack. 

• Focus on systems. Systems-focused threat modeling uses knowledge of the software or system 
to identify avenues of attack, which can be combined with attacker profiles to create detailed 
descriptions of how an attack might unfold. Attack trees,164 which share a common lineage 
with fault trees and Byzantine fault analysis from the safety discipline, are common methods 
but require detailed information that might not be available—especially in the case of systems 
not yet designed or developed. 

Clearly, limiting the scope of our analysis to one of these approaches would not have met the goal 
of providing a mission-centric, cross-functional view of the A4 community’s cybersecurity needs. As a 
result, we sought to incorporate asset, threat, and system viewpoints into a broader picture, while 

 
162 Shostack, 2014.  
163 This method is described in more detail by Adam Shostack and the Microsoft Security Team on its blog (Adam Shostack, 
“STRIDE Chart,” Microsoft Security blog, September 11, 2007). 
164 The concept of attack trees were first described by noted security author Bruce Schneier in a blog post, the computer security 
community adopted the concept and developed a body of literature that now promotes multiple published methods and analysis 
techniques (Bruce Schneier, “Attack Trees,” Schneier on Security blog, December 1999). 
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making the best use of the available data and interaction we were able to have with HAF/A4 cyber 
personnel. 

Why OCTAVE? 
It has been long recognized that threat modeling of operations larger than a specific system or 

piece of software in ways that are predictable, are consistent, and offer a high ROI requires a 
dedicated process. OCTAVE Allegro has been recognized by the community as a mature means for 
modeling at this level.165 Aspects of OCTAVE lend themselves well to the challenge of evaluating the 
myriad integrity concerns within logistics systems, including the following: 

• Abstraction. As a risk-centric approach, OCTAVE can be run at various levels of 
abstraction.166 As a methodology that was originally conceived as part of software and system 
development, both realized (implemented) and designed systems can be evaluated using the 
same process if the system can be sufficiently described and risk measurements applied.  

• Application of measures. Although prescriptive to the goals at each step, OCTAVE does not 
dictate the measurements or approaches to meeting process goals. This allows for the 
incorporation of both quantitative and qualitative approaches (such as modeling and 
simulation, intelligence, or data analytics) as part of the analysis. The ability to apply varied 
methods contributes to the flexibility described above. 

• Documentation. Although the approach might vary, the output at each step of OCTAVE is 
well defined and leads to standardized results that lend themselves to further analysis, 
reevaluation, or incorporation into other processes. 

• Relationship to HAF/A4 processes (e.g., RMF). This flexibility within a standardized 
framework was used to incorporate materials provided by HAF/A4 (such as the HAF/A4 
CIO Risk Frame)167 into the process, while also providing output that could be employed to 
further RMF and ATO decisions. 

One way to think about these aspects is to think of OCTAVE Allegro like a generalized planning 
process for security. Just as plans can be made at various levels of fidelity (or abstraction) and 
subsequently evaluated along different measure dimensions depending on the goal (such as efficiency 
or cost), OCTAVE and similar constructs support security decisionmaking throughout the system 
life cycle. Where RMF evaluates the state of security post-deployment, OCTAVE supports an 
understanding of how well security meets needs—similar to verification and validation in planning. 

As with any analysis, there were both pros and cons to this approach. On the positive side, the 
information-centric approach (employing information assets as the primary focus of the analysis) 
provided a tangible link between the systems and infrastructure (where information exists) and the 

 
165 Shostack, 2014. 
166 The term abstraction is used here relative to its definition in computer science: “The act or process of leaving out of 
consideration one or more properties of a complex object so as to attend to others” (Jeff Kramer, “Is Abstraction the Key to 
Computing?” Communications of the Association for Computing Machinery, Vol. 50, No. 4, April 2007). In this case, abstraction 
allows the analysis to focus on different aspects and levels of risk. 
167 U.S. Air Force A4P, 2020. 
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mission (how the information is used). This, in turn, allowed for a mission-centric, infrastructure-
agnostic view, tying recommended mitigations to specific mission risk through identified critical data 
elements. Being risk based, the output of this process (in the form of recommendations on actions or 
controls) can then be integrated into such standard processes as RMF to support investment, 
authorization, or compliance decisions. However, the abstract and flexible nature of the process 
requires careful interpretation and care at each step. Otherwise, the scope of considerations could 
grow exponentially or lead to analysis that inappropriately identifies large numbers of risks as high 
(or low), leading to a lack of differentiation and insight. Grounding the execution of the process 
through RMF and best practices helps to ensure that the result is usable and contributes to 
HAF/A4’s cyber posture. 
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Appendix E

OCTAVE Risk and Mitigation Analysis 
Details

This appendix supplies additional details related to the risk and mitigation analysis undertaken 
for each of the threads in Chapter 4. These details are presented here to provide context for the 
summarized mitigation insights reported. For each thread, the overall scenario and diagram is 
reproduced here for ease of reference.

Thread 1: Demand Forecasting
Thread 1 draws on current operations by examining the use of a system (demand forecast 

system) by a user or demand forecast planner (airman) employing software to develop a demand 
forecast output. This is accomplished by accessing one or more data repositories. Additionally, it is 
assumed that the system is administered by one or more admin users. This is depicted in Figure E.1.

Figure E.1. Depiction of the Misuse Cases Identified as Part of Thread 1, Step 4

Risk Analysis 
For this risk analysis, attention was placed on Pool 1 and Pool 2 risks, which constitute the upper 

third of the risk pool (4 and 31 risks, respectively). Because of the size of Pool 2, this was further 
subdivided into Pool 2 Upper and Pool 2 Lower risks, respectively.
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• Pool 1 (4 risks) focused on the demand forecast software, which scored the highest in 
potential impact to mission in the Step 7 analysis. This can largely be attributed to the team’s 
collective feeling that such errors are difficult to identify, especially in COTS software where 
the government often does not have visibility into the software or its development process. In 
particular, Pool 1 risks focused on the alteration of this software via supply-side or man-in-
the-middle means.168 

• Pool 2/Upper (14 risks) continued the focus on the demand forecast software, with more 
focus on potential vulnerabilities. In addition, risks relative to the ability to generate or alter 
the output of the demand forecast software were prevalent in Pool 2, highlighting the 
potential for alteration or forgery. After the demand forecast software, the demand forecast 
itself ranked high relative to potential mission impact because of the potential for widespread 
disruption.  

• Pool 2/Lower (17 risks) continued the theme of risks to the demand forecast, considering a 
broader array of vectors that includes misuse of credentials, known and unknown 
vulnerabilities, and the potential for a compromised security monitor to act as a vector for 
attack. 

Before discussing potential mitigations and our analysis of these risks, it is useful to examine 
some of the findings of this analysis. 

• Notably, risks related to input data did not feature in the upper risk pools. This is the only 
information asset that does not feature in Pool 1 or 2. As part of our consequence analysis in 
Step 7, these items were evaluated as having a low consequence, in part because of their ever-
changing and distributed nature: Their scope is generally limited (by part or platform) and 
their values subject to various existing checks and balances because of the variable quality and 
timeliness of these data. These challenges were identified in prior RAND research and 
echoed by domain experts.169 

• The introduction of a security monitor as an information asset resulted in Pool 2 risks not 
present in the first pass of the analysis. This highlights the need to consider security controls 
as part of the threat surface, as evidenced by recent intrusions that have made use of endpoint 
detection and monitoring tools. 

Mitigation Analysis 
We considered 20 different controls with the potential to address the risks identified. These 

controls were not intended to be comprehensive but instead represent common information security 
and security engineering controls that affect system integrity. Therefore, they do not serve as an 

 
168 The alteration of software updates and the management of vulnerabilities within software libraries have been at the heart of 
two of the largest breaches to affect DoD: The SolarWinds and Log4J events have placed focus on the software supply chain as 
a vector for attack. While in neither case was information made public that indicated integrity attacks occurred as a result of 
these intrusions, the access achieved by the threat actors would have enabled such actions and rendered them very difficult, and 
perhaps even impossible, to detect. 
169 Snyder et al., 2015.  
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exhaustive analysis of alternatives, but rather specific options selected by SMEs that address 
identified concerns. As this portion of the effort was conducted prior to the receipt of the system 
security plan (SSP) documentation for the ESCAPE system,170 the identified controls additionally 
provided a natural basis of comparison between existing controls and integrity-based threats. 

Starting with the comparison with the existing cyber posture, there were controls identified in 
our analysis that were already partially or totally inherited by ESCAPE (approximately 10 out of 23) 
and several additional controls not on our list that were in place (primarily addressing confidentiality 
and integrity concerns not considered here).171 Of the controls identified in our analysis that were not 
implemented, the items identified with the most potential for impact include (items related to NIST 
SP 800-53 rev. 5 controls are shown in brackets) the following: 

• Requiring bills of materials from vendors [SC-16]. SBOMs are a current research topic 
generating a lot of interest for the promise of providing a computable method of identifying 
components that might be problematic or in need of update.172 Related to this is the levy of 
requirements on the vendor to maintain a level of security guarantee [SA-4]. 

• Requiring and verifying all code received from the vendor for delivery, installation, and update [SA-
10(1), SA-10(6), MA-3]. This refers to the practice of using hashes and cryptographic 
signatures as part of a process to validate software as supplied from the vendor and across 
installations. It is, however, limited to the assurance that can be provided by the generator or 
approver of the software.173 

• Implementing start-up and runtime attestation of software [IA 3(1)]. One means of ensuring 
software is unchanged from compile time is to use such cryptographic verification as provided 
by Trusted Platform Modules. However, such an approach could incur additional monetary 
costs, affect performance and maintainability, and be difficult to implement in some 
environments. 

• Conducting analysis for vulnerabilities. This could be done by the vendor, the government, or 
(ideally) both, through several mechanisms: 

- Static Analysis [SA-11(1)] on source and raw artifacts. This is generally accomplished 
using tools, although manual processes that explore both code and artifacts (such as 
architecture analysis) can provide greater assurance (although often at a greater cost and 

 
170 “Enterprise Supply Chain Analysis, Planning and Execution—Operational Data Store (ESCAPE-ODS) System Security 
Plan (SSP),” Version 1.2.1, October 5, 2021, Not available to the general public. 
171 This number is approximate because the control categories identified in SP 800-53 rev. 5 contain an amount of overlap and 
may be implemented, tailored, or inherited. The number might be higher, but the purpose of the comparison was to highlight 
areas that might not be considered or might not be implemented with the goal of integrity rather than to assess current controls 
or posture. 
172 The Cybersecurity and Infrastructure Agency has an SBOM initiative to promote this practice (“Software Bill of Materials,” 
undated).  
173 As we were finalizing this report, the Office of Management and Budget issued memorandum M-22-18, titled Enhancing the 
Security of the Software Supply Chain Through Secure Software Development Practices. This memorandum provides guidance 
directing each federal agency to comply with Executive Order 14028 through two specific actions, summarized as “obtain self-
attestation before deployment” and “obtain software artifacts to demonstrate conformance” (with SBOMs provided as an 
example)—corresponding to bullets 1 and 2 of this section (Office of Management and Budget, Enhancing the Security of the 
Software Supply Chain Through Secure Software Development Practices, M-22-18, September 14, 2022). 
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level of expertise). Mitigation capability depends on the ability to act on results but 
requires access to these materials.

- Dynamic analysis [SA-11(8)], which uses compiled code and so can be accomplished 
independently of the vendor (potentially as part of a verification process, as described 
above) and requires only the delivered executable.

- Red-teaming/penetration testing [CA-8], ideally using external parties.

• Placing analysis out of band [CA-7, PM-31]. Recognizing that monitors pose a risk because of
their level of system execution and expansive data access, placing these items out of band (e.g., 
behind a one-way diode) from mission software will limit their ability to serve as vectors of 
attack. This, however, comes with costs and could further limit the ability to react to events
in a timely manner.

• Cryptographic protection of software outputs [SC-13]. Although this control is identified as 
inherited (presumably because of the encryption at rest supplied by AFNet machines), 
encryption of individual outputs would further limit the damage a malign actor (such as an 
insider) might enact. Such a change would presumably require updates to the demand 
forecast software itself, through either HAF/A4P or vendor implementation.

• 2FA [IA-2]. This is, again, an inherited control; however, the SSP leaves open the possibility 
that while the machine running the demand forecast software may use 2FA (in the form of 
CACs), it is likely that the demand forecast software itself does not. This opens both insider 
and remote threats, potentially allowing anyone with AFNet access to this software.

Thread 2: Bot Development and Employment
Thread 2 describes a robust bot development and use environment, as depicted in Figure E.2.

Figure E.2. Notional Bot Development and Employment Scenario Used for Analysis
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Risk Analysis 
The result of the misuse analysis for this thread was the identification of 70 total risks. As before, 

these risks were scored and pooled, resulting in 3 risks in Pool 1 and 28 risks in Pool 2 (again 
separated into Pool 2/Upper and Pool 2/Lower, with 10 and 18, risks respectively). 

• Pool 1 (3 risks) focused on the bot code, which was rated in Step 7 as the information asset 
with the potential for severe integrity-based disruption. The threats identified in this pool 
related specifically to the targeting of bot code in development, by either internal or external 
actors (with the former incorporating both malicious insiders and threats without malicious 
intent, occurring through human error or inattention). 

• Pool 2/Upper (10 risks) includes additional risks to the bot code, as well as risks related to 
the compiled bot and the data. The common theme in this risk pool is the alteration or 
substitution of information during testing or operations. Threats to the code while in transit 
are also identified here. 

• Pool 2/Lower (18 risks) rounds out the focus on the compiled bot and data, with risks 
focused on threats to related to storage in the bot repository for the former and the 
falsification of data for the latter. 

It is again notable that one information asset, the bot model, does not appear in either of the top 
risk pools. This is likely because of the stated assumption of a static model, rendering risks to the 
model secondary to risks to the overall code. Even without this stipulation, although attacks on 
learning-based models are a popular topic, their implementation in practice remains a challenging 
proposition. 

Mitigation Analysis 
Using a pool of roughly 20 controls similar to Threads 1 and 2 as a basis, we employed sources of 

low- and no-code security advice to guide the list of investigated controls—notably, “OWASP Top 
10 LCNC Security Risks.” The risks identified by OWASP include a mixture of technical, training, 
and procedural activities. These were further augmented by the research team’s experience (OWASP 
and SP 800-53 rev. 5 linkages are shown in brackets). 

• As in prior threads, audits [OWASP LCNC-SEC-01/10, AU-2, AU-14] provided the widest 
impact, although not the largest reduction. Our analysis also recognized the development of 
policy and guidance [SR-1, SA-1] as an ongoing DAF initiative in this space and one that can 
be mapped to a wide variety of risks.  

• Along with the need for standards comes the need to develop and enforce secure coding/best-
practice guidance and training of staff [OWASP LCNC-SEC-02/04/05/06, SA-16]. 
Although the promise of low- and no-code environments is their utility to nonprogrammers, 
it will still be essential to maintain a level of quality in bot development operation to limit the 
introduction of vulnerabilities or errors leading to compromises of integrity.  

• Some of the largest impacts, both per risk and across risks, focused on security of the 
development environment.  
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- Implementing and executing a patching program for the bot platform and associated 
repository [MA-3(6)] addressed some of the highest risks. Although the specific 
configuration will drive the exact risk posture in this case, the existence of these
vulnerabilities presents a point of increased attention for DAF adoption.

- Implementing 2FA for development and storage [IA-2]. Once again, specific 
implementation details will drive the nature of this risk. Controlling access to the bot 
development and storage platforms will be a key, but potentially difficult, endeavor—
especially for development platforms not fully on premises or within the DoD cloud.

- Conducting reviews on bot products to ensure least privilege (such as through code 
review [OWASP LCNC-SEC-01/02, AC-6]) and executing red-team assessments of 
both the development and operational environment [CA-8].

• Relatively inexpensive controls related to bot design and development recommended by 
OWASP include ensuring that user and service accounts are decoupled [OWASP LCNC-
SEC-01, AC-3, AC-5] and shared connections are limited and monitored [OWASP LCNC-
SEC-02/07, CA-3].

Thread 3: Bot Employment for Data Integration to Enable Failure 
Analysis

Thread 3 brings together concepts from Threads 1 and 2 to examine the scenario outlined in 
Chapter 3, as depicted in Figure E.3. 

Figure E.3. Depiction of the Thread 3 Bot Use Case
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Risk Analysis 
Given the relationship of this thread to the prior threads, we were able to map the information 

assets identified to those already examined in prior threads (Table E.1), allowing us to reuse the 
threat and risk analysis already developed. 

Table E.1. Mapping of Information Assets and Areas of Concern for Thread 3, Based on Thread 
1 and Thread 2 Analysis 

Info Assets Mapped to  Misuse Cases 

Bot (compiled) Thread 2: Bot (compiled) 
Thread 1: Demand forecast 
software 

Alteration of the bot executable via injection, 
alteration, deletion to undermine execution (mission 
environment) 

Alteration of the bot executable via injection, 
alteration, deletion during submission of the bot to 
the repository 

Substitution of artifacts/data in transit 

Data (operational) Thread 2: Data (operational) Alteration/faking of operational data (at rest) 

Substitution of (altering, faking) artifacts/data in transit  

Bot output Thread 1: Demand forecast 
output 

Generation of a fake (output) by executing the (bot) 
using incorrect/spurious data 

Generation of a fake (output) by altering an existing 
[output] 

 
Unlike the other threads that focused broadly on supply chain functions, the nature of the 

scenario and the HAF/A4 movement toward the UiPath product allowed a more targeted analysis in 
Step 3 (Table E.2), providing a richer context for recommendations that informed risks related to 
development and deployment scenarios. Using both the information asset and container mappings 
alongside the prior threat and risk analysis allowed the research team to quickly identify relevant risks 
for further consideration. 

Table E.2. Information Container Mappings (with Deployment Options Highlighted) 

Container Description Owner(s) 

Information Asset Risk Environment Map (Technical) 9a 

Internal 

Debrief system (IT) AFNet 

Execution system (IT) AFNet 

IMDS* AFNet/Cloud 

ILS-S* AFNet/Cloud 

Data repository* AFNet/Cloud 
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Container Description Owner(s) 

Bot platform/repository* AFNet/UiPath 

External 

Bot platform/repository* UiPath 

Information Asset Risk Environment Map (Physical) 9b  

Internal  

Maintenance site USAF 

External 

Cloud USAF/Commercial 

Information Asset Risk Environment Map (People) 9c  

Internal 

Pilot USAF 

Debriefer USAF 

Maintainer USAF 

Support section USAF 

External 

UiPath development and support UiPath 

NOTE: * Denotes that the item may be internal or external based on architecture or 
configuration. 

 
Using the same analysis and pooling method applied in the prior analysis, approximately 50 risks 

from Threads 1 and 2 were identified as being relevant: 

• Pool 1 (5 risks) related to supply attacks on the bot and software platform. 
• Pool 2/Upper (13 risks) primarily focused on the use of known vulnerabilities to undermine 

the bot and bot output. 
• Pool 2/Lower (18 risks) represented the largest set, primarily focused on the data and bot 

output information assets. 
• The remaining risks were allocated into Pools 3 and 4.  

Unlike Thread 1 and Thread 2, the distribution of risks in the analysis for Thread 3 spanned 
each information asset and threat vector within the upper risk pools while capturing many of the 
same issues raised in those threads. 

Risk Analysis 
With the mitigations already examined in Threads 1 and 2, their analysis in the context of 

Thread 3 is fully described by the observations detailed in Chapter 4.   
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Abbreviations 

2FA two-factor authentication 
A4 logistics, engineering, and force protection 
A4L Logistics Directorate 
AFLCMC Air Force Life Cycle Management Center 
AFMC Air Force Materiel Command 
AFNet Air Force Network 
AFRL Air Force Research Laboratory 
AFSC Air Force Sustainment Center 
AI artificial intelligence 
APSR accountable property system of record 
ATO authority to operate 
BOSS Base Operating Stock Specialist 
C3I command, control, communication, and intelligence 
CAC common access card  
CEMS comprehensive (or centralized) engine management system 
CIMIP Comprehensive Inventory Management Improvement Plan 
CIO Chief Information Officer 
COE Center of Excellence 
COTS commercial off the shelf 
COVID-19 coronavirus disease 2019 
DAF Department of the Air Force  
DFA demand forecast accuracy 
DLA Defense Logistics Agency  
DLM depot-level maintenance 
DLR depot-level reparable 
DoD U.S. Department of Defense 
ECSS Expeditionary Combat Support System 
EOH engine overhaul 
ERP enterprise resource planning system 
ESCAPE Enterprise Supply Chain Analysis, Planning, and Execution 
ETM Electronic Technical Manual 
EW electronic warfare 
FY fiscal year 
GAO Government Accountability Office 
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GB Business Enterprise Systems Directorate 

HAF/A4 
Headquarters U.S. Air Force Deputy Chief of Staff for Logistics, Engineering 

and Force Protection 
HN Command, Control, Communications, Intelligence and Networks Directorate 
IA intelligent automation 
IBM International Business Machines 
ILS-S integrated logistics system supply 
IMDS integrated maintenance data system 
IPB illustrated parts breakdown 
IT information technology 
JCN job control number 
LCNC Low-Code/No-Code 
LIMS-EV Logistics, Installations, and Mission Support—Enterprise View 
LMI Logistics Management Institute 
MICAP mission impaired capability awaiting parts 
ML machine learning 
MMH maintenance man-hours 
NDAA National Defense Authorization Act 
NHA MISTR next higher assembly management of items subject to repair 
NIIN national item identification number 
NIST National Institute of Standards and Technology 
NLP natural language processing 
NMCS not mission capable for supply 
NN neural network 
NSN National Stock Number 
OCTAVE Operationally Critical Threat, Asset, and Vulnerability Evaluation 
OEM original equipment manufacturer 
OIM organization and intermediate maintenance 
OSD Office of the Secretary of Defense 
OWASP Open Web Application Security Project 
PAF Project AIR FORCE 
PDM programmed depot maintenance 
PKI public key infrastructure 
PNG Peak Policy and Next Gen 
PTC Parametric Technology Corporation 
RMF risk management framework 
RMS Requirements Management System 
ROI return on investment 
RPA robotic process automation 
RPAaaS robotic process automation as a service 
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SAF/FM Secretary of the Air Force Financial Management & Comptroller 
SBOM software bill of materials 
SCMS supply chain management squadron 
SCMW supply chain management wing 
SCOS supply chain operations squadron 
SEM scheduled event maintenance 
SME subject-matter expert 
SoS source of supply 
SP Special Publication 
SPM Service Parts Management  
SSDLC system security development life cycle  
SSP system security plan 
USAF U.S. Air Force 
WUC work unit code 
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