
1 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

Initial Measurement of Data Quality  
Mitchell J. Kinney, Ph.D.*a  

aThe MITRE Corporation, 7515 Colshire Drive, McLean, VA USA 22012 

ABSTRACT  

The quality of a dataset is extremely hard to gauge in the age of big data because of the overwhelming amount of 

data needed to train deep learning models. To estimate the applicability of our data to a deep learning solution, we 

often must fit our model. This is a time and resource intensive process. The method we present here is a quick triage 

if the data may not be worth the time or if it may deserve more thorough vetting before fitting a solution. We 

propose a data quality score that is closely associated with the amount of separability within the data. Our target 

application is for a large amount of unstructured data such as images and text. We use pre-trained models to do 

feature generation and use an approximate nearest neighbor solution for speed in understanding the local 

neighborhoods of data points. In simulation and through examples on well-known toy datasets our method performs 

as expected and is able to identify when there may be problems when training a classifier. 

 

Keywords: Data, Artificial Intelligence, Assurance, Model Agnostic 

 

1. INTRODUCTION  

In Artificial Intelligence (AI) and Machine Learning (ML), the effectiveness of classification in supervised learning 

is largely determined by the quality of the data used to construct predictive models. A common phrase about model 

training is “Garbage in, garbage out,” referring to data quality. When faced with an incredibly large amount of high 

dimensional data, such as images or text, it is hard to know the quality of the dataset before fitting a model. 

Determining dataset quality is often a long and expensive process. We consider dataset quality to be proportional to 

the measure of class separability and this paper presents an efficient way to determine this measure of class 

separability. Figure 1 illustrates how classification performance corresponds to data overlap between classes. In the 

figure, the example on the left is visually more separated than the data on the right which leads to a better accuracy 

and F1 score if the dashed line is our decision boundary. Figure 1 also shows the data quality score proposed by this 

paper. Since class separability is inherently model agnostic, a data quality score should be attainable before any 

model selection is performed. The data quality score will be high for higher class separation.  

 
Figure 1. Example of how class overlap affects model performance. Data quality score (proposed by this paper) and common      

performance metrics are shown in each image along with the decision boundary from a trained logistic regression classifier. 

Source: MITRE 

The method we use to measure class separability takes advantage of the plethora of pretrained models that exist to 

encode unstructured data into features. Our focus is on labeled data that is being used for classification. We use an 

approximate nearest neighbor search with weighted rankings for each point. To calculate a score of class separability 

we average the weighted rankings over each class. Our intuition is that when close points share the same class this 

should result in a high data quality score.  



2 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 

*mkinney@mitre.org 

Additional research is done on the identification of points that may be outliers or exist along a potential decision 

boundary between classes. Part of the process of measuring class separability is collecting scores from each point 

which identifies points that may fall far away from a class cluster or fall in between class clusters. The three labels 

we associate with points are either cluster for points that are within a class cluster surrounded by points of the same 

class, outlier for points that are surrounded by points that are not of the same class, and edge for points that are close 

to both points in the same class and different classes. We use leave-one-out on each point to measure the change in 

ranked scoring for each class. This helps to determine not only what points were close to the left-out point, but also 

what points had the left out point in their neighborhoods. This two-way inspection of each point gives a better sense 

of the point’s location within the data cloud. Additional post processing ensures point pairs (such as cluster and 

outlier within the same class) are not in each other’s neighborhoods.  

 

The contributions of this report are a score for calculating class separability for unstructured data such as image and 

text in a timely manner, a model agnostic approach for labeling points as outliers or edge points, and results and 

examples of how the contributions can be used with simulation and well-known toy datasets.  

2. PREVIOUS RESEARCH 

The topic of classification complexity and data separability has been studied intensely. A seminal paper [6] defined 

three different categories for measuring a classification dataset for separability: (i) measures of overlap of individual 

feature values; (ii) measures of the separability of classes; and (iii) geometry, topology and density of manifolds 

measures. Our contribution falls into the second category. Other measures that exist in this category come from a 

survey [7] and include neighborhood measures. One example is Fraction of Borderline Points, [6] that builds a 

Minimum Spanning Tree from the data and counts the number of edges shared by points with different classes. 

Building the graph edges accounts for the distance between the points and comparing classes accounts for the 

neighborhood approach. Critical points are those whose distances are small between points that are of differing 

classes. The T1 distance or Fraction of Hyperspheres Covering Data builds hyperspheres around each data point and 

expands them until they encompass a point of another class. Then any hypersphere completely contained in another 

hypersphere is eliminated. The count of remaining hyperspheres is a measure of classification complexity.   

 

Another more recent measure is in [5] which computes the ratio between the intra distance of classes and between 

distances of classes. These intra class distances are calculated by finding the pairwise distance of all points in a class 

and the between class distance is the distance between points from different classes. The ratio of these two distances 

is compared using the Kolmogorov-Smirnov distance for each class. We differentiate our method from these 

techniques by focusing on speed and unstructured data. Since a lot of time can be spent on these methods for very 

large datasets, our method uses an approximate solution rather than a complete one. Also, all these metrics require 

structured data which we create in our method. Therefore, the methods mentioned here could be of use after 

converting the unstructured data into features. 

 

The second area that this report covers is labeling cluster, edge and outlier points. We could not find work that 

attempts to categorize points as possibly being on the decision boundary before model fitting. However, there is a lot 

of work on outlier detection. Methods that are comparable to our contribution are specifically supervised anomaly 

detection. One method is by [4] which combines outlier detection algorithms with supervised modeling to optimize 

outlier detection hyperparameters. This method is similar to ours because it does not rely on known class 

distributions to calculate the outliers. Our method focuses on neighborhoods of points and the differing classes 

instead of exploiting class distributions.  

 

3. DATA QUALITY 

In this section, we introduce our approach to creating a model-agnostic measurement of data quality, focusing on 

class separability. The steps to calculate our measurement are: (i) generate features for each data point using pre 

trained deep learning models; (ii) reduce the dimension; (iii) input into a database and perform approximate nearest 

neighbor search for each point; and (iv) aggregate weighted neighborhood rankings for each data point.  

 



3 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

The first step involves using a model zoo to generate features from unstructured data such as images or text as 

shown in Figure 2. Many pre-trained models exist that have been trained and validated on generalized tasks and 

well-known benchmarks. These datasets are representative of a multitude of tasks such as classification, entailment, 

object detection, etc. and can provide a good baseline for transfer learning to a new dataset. We leverage this 

existing resource by removing the model's head, where the objective typically resides, and extract features from the 

last layer. To create a high-dimensional object for each data point we concatenate the features together. We 

recommend using model pairings that have been trained on different datasets to avoid redundant information. All 

models we use are from pytorch [10] or huggingface [14]. 

 

 
     Figure 2. Pytorch’s [10] offering of pre trained models available to download and use. 

The next step is to use dimension reduction techniques to search through the data in an efficient manner. The 

approximate nearest neighbor solution that we use is time dependent on the number of features within each data 

point, so to ensure a quick method we must reduce the feature size. Two methods that we explored are random 

projections and principal component analysis [1]. A visualization of how random projections are computed is shown 

in Figure 3. Random projections have been shown to provide dimension reduction while still maintaining the 

relative distance between the points for a chosen threshold if certain criteria are met [3]. One of these criteria is the 

Johnson-Lindenstrauss lemma [8] that is a calculation of the dimension size the features can be reduced to and still 

maintain the threshold relative distance given the number of samples in the dataset. The Johnson-Lindenstrauss 

lemma [8] is a worst case scenario. In Python package sklearn [11] the dimension reduction is done by generating a 

matrix 𝑁𝑝 × 𝑑 of iid Gaussian random variables with mean 0 and variance 
1

𝑑
. Here p is the original dimension size 

and d is the reduced dimension size. Then to get the reduced features, sklearn matrix multiplies the original data 

matrix with the generated matrix. Principal component analysis was also explored, but reducing the dimension by 

compressing the information in the features was not as applicable in our setting as maintaining relative distances 

between points. Therefore, all results and examples shown were done using random projections to reduce the 

dimension.  

 

The approximate nearest neighbor solution that we used is ANNoy [2] which is a library that utilizes random 

projections to build trees that separate features by layers of hyperplanes. The distance formula to measure distance 

between points and hyperplanes used is Euclidean. Tuning parameters that exist for the library are how many 

hyperplanes deep to go in the trees, and the number of nodes to search for similar items. Both have a tradeoff 

between performance and speed. For all the tests we used a consistent set of parameters because performance did not 

seem to be impacted when using different parameters. 



4 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
Figure 3. Random projections aid in reducing the dimension of the data. The dimension of the points will be reduced to the 

number of hyperplanes (dashed lines) chosen and the reduced vectors will be dependent on the relative location of the points 

to each hyperplane. Source: https://www.pinecone.io/learn/locality-sensitive-hashing-random-projection/ 

 

 

After neighborhoods have been built for each point, we rank points by distance and sum the ranks within class. For a 

neighborhood of approximate nearest neighbors of size 𝐾 we sort the neighboring points from closest to farthest. We 

use inverse ranks as the score so the closest point is scored as 𝐾, and the furthest point in the neighborhood is scored 

as 1. An example is shown in Figure 4. For each point in the dataset we use its neighborhood to sum up the inverse 

rank scores over the classes. If the current point has class 𝑐0 then the cumulative score for the same class is 

∑ 𝑘 1(𝑐𝑘 = 𝑐0)𝐾
𝑘 . The equation for all other classes replaces 𝑐0 with the appropriate class label. After calculating 

these scores for each point we sum the matching class pairs to produce a matrix. The matrix cell values are 

associated with the current point class and neighborhood point class respectively. Intuitively the matrix shows the 

clustering of classes along the diagonal and overlap between classes on the off diagonals. Note this is not a 

symmetric matrix since the existence of point A in the neighborhood of point B does not guarantee the point B will 

be a nearest neighbor of the point A. If these two points are from different classes the matrix will not be symmetric. 

The matrix is then normalized across rows, so the rows add up to one to highlight the proportionality of clustering 

and overlap within a specific class. We do not average on the number of labels in each class because we are not 

comparing the measurements between classes.   

 

 
Figure 4. Example of scoring using inverse rankings for the same class. Image to the left is the data point being evaluated. The 

other images in the row are the neighborhood sorted by closeness. Source: MITRE 

We expect that the larger the scores along the diagonals, the more clustered the individual classes. Likewise, the 

larger the scores on the off diagonals, the more overlapped the two classes. Since AI/ML solutions will typically do 

better the more separated data is, lower scores along the diagonal would indicate a worse performing classification 

model. To get a one number summary we can average along the diagonal to get an average same class data quality 



5 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

score. This was done in Figure 1 where we showed how poorer data quality scores resulted in lower classification 

scores. In our results section we show through simulation how the data quality score changes with scenarios that are 

known to affect data separation. Also, we show scores for well-known toy datasets. 

4. LABELING POINTS 

Part of the process of calculating dataset spread is to calculate individual separability scores for each point. We take 

advantage of this to label points as possible problems when fitting a model. The distinctive labels we choose are 

whether points are outliers, along the edge of class clusters, or within a class cluster. If the neighborhood of a point 

is made up of points with class labels different than the main point we consider the main point an outlier, whereas if 

the neighborhood is made up of points of the same class, then it is within a class cluster, and if there is a mix of 

classes within the neighborhood then it is an edge point. We differentiate between outlier in the canonical sense of 

being far away from a distribution. Here a point is only an outlier if we expect the point to influence the decision 

boundary of the not-yet-fit classifier. An example of an outlier as defined in this paper is shown in Figure 5. If a 

point is not close to its class cluster but still the nearest points are all the same class, then this would not be labeled 

as an outlier. Looking at only the neighborhood of the point itself leaves out the information about the 

neighborhoods that the point may be included in. To account for this additional information, we use leave-one-out 

and compare the scores between the point being included and not. This is instead of a method like treating the 

problem like a classification task and using KNN classification. Depending on the change in the same class score 

and different class scores, we can assign the appropriate label.  

 

 
Figure 5. Circled is a point that is considered an outlier. The X’d points are ones that our method does not consider outliers. 

Source: MITRE 

The process of doing leave-one-out on a nearest neighbor search would be extremely long so instead we reuse the 

scores found in the previous section when we calculated the data quality score matrix. To do this we keep track of 

the neighborhoods of each point and artificially reduce the number of nearest neighbors by one. This will initially 

change the data quality score slightly. Then for each point we remove the point from all the neighborhoods we know 

it’s a part of and we remove the scores for when the point was the central point. When a neighborhood loses the 

point all other points in the neighborhood are moved “closer” and the artificially left out point becomes part of the 

neighborhood again. Then the overall data quality score is recalculated adjusting only for the changes instead of 

going over the entire data set again. One difference in this step from the previous section is we do average over the 

number of points in each class. Since we are comparing between runs with varying number of observations it is 

important to average so we can control this variation. An example of how the scores change with leave-one-out is 

shown in Figure 6. In Figure 6 the points are color coded to show which class they belong to. The darker blue 

column are the points left out of the neighborhood in the initial calculation. As point 4 is eliminated in each these 

points become a part of the neighborhood if point 4 was previously in that neighborhood. The Same Class Score is 

then updated accordingly based on the class of the new point. Keep in mind that when re calculating the new overall 

data quality score, the Same Class Score for point 4 would also be eliminated. The top example in Figure 6 shows 

point 4 as an edge point, middle example a cluster point, and bottom example an outlier point. 

 



6 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
Figure 6. Each horizontal example shows the calculation for determining point 4 is an edge (top), a cluster (middle) or an 

outlier (bottom). Each number is color coded to correspond to a class. The circled numbers represent a change in score when 

point 4 is removed. The dark blue column indicates points that are not used in the initial score but are included if point 4 was a 

part of the neighborhood when removed. For example, we see that in the top example a score for a point in a different class 

went up and the same class went down indicating an edge point. Source: MITRE 

To determine which label to assign each point, thresholds on the amount of change in score of same class and 

different classes are applied. When we remove points labeled as a class cluster, we expect the same class score to 

change minimally and the different class scores to remain the same. If a point is surrounded by points of the same 

class then the point should not be in the neighborhood of any point of a different class and should be replaced by 

points of the same class when removed from neighborhoods of same class points. For points labeled as an outlier we 

expect the same class score and different class scores to increase. A main point that has a neighborhood with points 

of a different class, will negatively affect the class data quality score. If that main point is in the neighborhoods of 

different class points, then the different class quality scores will also be negatively affected. Therefore, removing the 

outlier will increase all scores. The edge points are a mixed bag. Empirically we’ve observed that edge points will 

increase in one score and not the other. For instance, if an increase in the same class score is observed and no 

increase in different class scores then we label it an edge. This can be imagined as the point having a neighborhood 

of different class points but not being in the neighborhood of those different class points. And if a small decrease is 

observed in the same class score and a large increase in different class scores is observed then we also label it an 

edge point. This scenario can be imagined as a point having a lot of the same class points in its neighborhood and 

being in the neighborhood of a lot of different class points. Figure 7 provides a visualization of the neighborhood of 

a cluster point, edge point and outlier point.  

 

The thresholds that are chosen to consider a score has “changed” is a percentile of the distribution of all changed 

scores and independent for same class or different class. After calculating all the scores when performing leave-one-

out we observe the distributions are highly skewed. Most points fall close to minimal change for both same and 

different classes which is to be expected if we have a candidate dataset for an AI/ML classification solution. 

Empirically we use the 99th percentile for each score change as the cutoff. If a point falls above the 99th percentile of 

both score changes then it is an outlier, if it falls above only one cutoff then it is an edge, otherwise it is a class 

cluster point. In Figure 4-4 an example of the spread of score changes and the corresponding labeled points is 

shown. Note that the red lines indicate the 99th percentile of the score changes, so there is a lot of data bunched 

around the origin. 

 



7 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
Figure 7. In each plot the point with an X is the central point and the circles are the neighborhood points. The left is the 

neighborhood of a cluster point. The middle is a neighborhood of an edge point. The right is the neighborhood of an outlier 

point. Source: MITRE 

The thresholds that are chosen to consider a score has “changed” is a percentile of the distribution of all changed 

scores and independent for same class or different class. After calculating all the scores when performing leave-one-

out we observe the distributions are highly skewed. Most points fall close to minimal change for both same and 

different classes which is to be expected if we have a candidate dataset for an AI/ML classification solution. 

Empirically we use the 99th percentile for each score change as the cutoff. If a point falls above the 99th percentile of 

both score changes then it is an outlier, if it falls above only one cutoff then it is an edge, otherwise it is a class 

cluster point. In Figure 8 an example of the spread of score changes and the corresponding labeled points is shown. 

Note that the red lines indicate the 99th percentile of the score changes, so there is a lot of data bunched around the 

origin. 

 

 
Figure 8. On the left shows a scatter plot of the score differences for same and other class. The red lines are the 99th percentile 

of each. Each point in the top right quadrant is labeled as either an edge or outlier. On the right is the resulting plot showing 

which points got labeled as edges and outliers. Source: MITRE 

We also do post processing on the points to ensure close points do not have labels that contradict. In the 

neighborhood of a class cluster point there should not be a point of the same class with the label of outlier. If an 

edge point is surrounded by too many cluster points of a different class then we change this to an outlier. We 

determine “too many” cluster points by a percentage of the weighted rankings in the neighborhood of the edge point. 

This percentage is tunable, but empirically we use if 80% of the weighted rankings belong to a different class then 

we convert the edge to an outlier. Further work can be done to identify the correct threshold percentage rather than 

settle for an empirical observation.  

 



8 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

Overall, this method helps with identifying potentially problematic points that may decrease the data quality or 

influence the decision boundary location between class distributions. In our results section we show examples from 

simulation and well-known datasets highlighting the data points our method picks out.  

5. RESULTS 

The results shown from both methods are from datasets generated through simulation and well-known toy datasets. 

All simulation data was derived from sklearn [12] and the toy datasets were downloaded through pytorch [10]. We 

will first show how the data quality score is affected by adjusting parameters known to affect data spread in 

simulation to demonstrate that the data quality score reacts as expected. Then we will show the data quality scores 

for well known toy datasets CIFAR10 (image) and 20 newsgroup (text). For the method to label points, we show 

what data points were labeled as edge and outliers within the simulated and well-known toy datasets. Finally, we can 

demonstrate how the data quality score correlates with performance on simulated data and if removing outlier points 

improves the classification score.  

 

Data Quality Score 

The simulations were run for different parameter combinations to observe how changes would affect the data quality 

score. Overall, the changes in score that were seen align with what was expected. Since a big part of the method is 

timing, we display timing results in Table 1. These results display how long the method takes to run after generating 

the features. The cells in the table left blank indicate that there was not enough memory to run the simulation. We 

can see that for all values in the table, they are significantly lower than what would be required to train a deep 

learning classifier which is the goal. The next tables show the data quality score averaged over the same class score 

or the diagonal of the computed matrix. Table 2 shows the data quality scores for a changing number of features and 

samples. Important parameters that were held constant throughout the simulation is the number of classes were 2, 

and there were no dirty labels. From the table we can see that as the samples increase data quality increases and as 

features increase data quality decreases. As the number of samples increase and distribution stays the same we most 

likely see more data being added to cluster centers rather than edges or outliers causing the data to be more compact. 

As the number of features increase and we use our dimension reduction techniques the reduced data may be stripped 

of more and more information because even low variable dimensions may have useful information for separability. 

This is an unsupervised dimension reduction so the risk is that information that would help with separability is being 

lost. This is not seen as a large issue because our goal is only to evaluate data quality and not classification.  

 
     Table 1. The number of seconds needed to run our method with simulated data. 

  Number of Samples   

  1 x 103 1 x 104 1 x 105 1 x 106 

Number of 

Features 

1 x 102 0 3 42 578 

1 x 103 0 5 63 - 

 1 x 104 1 20 - - 

 
Table 2. Data quality score changes over number of samples and features. 

  Number of Samples   

  1 x 103 1 x 104 1 x 105 1 x 106 

Number of 

Features 

1 x 102 0.891 0.9283 0.96 0.976 

1 x 103 0.6972 0.7168 0.7271 - 

 1 x 104 0.6461 0.6541 - - 

 

Table 3 shows how the data quality score changes over the parameters of dirty labels, amount of separation and 

number of classes in the data. The number of samples are held constant at of 1 x 105 and the number of features as 

well at of 1 x 103. We can see expected results of data quality score degrading when we increase the number of 



9 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

classes and keep everything else constant. More data in a confined area will most likely lead to less data separability. 

Also we see the score degradation when we increase the proportion of dirty labels being introduced into the data 

which is expected. Data separation is a measure of how far apart the centers are when the data is being generated 

and as the separability increases so does the data quality which is expected. Overall, the score changes align with 

what we would expect. 

 

Table 3. Data quality score changes over number of classes, data separation, and dirty labels. 

Number of classes = 2 

Proportion Dirty Labels 

Data Separation  0 0.01 0.05 0.10 

0.1 0.6548 0.652 0.6405 0.6273 

1.0 0.6738 0.6703 0.6556 0.6392 

2.0 0.732 0.7262 0.7023 0.6754 

 

 

Number of classes = 4 

Proportion Dirty Labels 

Data Separation  0 0.01 0.05 0.10 

0.1 0.4296 0.4279 0.4216 0.4138 

1.0 0.4464 0.4443 0.4361 0.4263 

2.0 0.4494 0.4961 0.4822 0.4467 

 

The final simulation compares how data quality score is affected by changes in number of nearest neighbor and 

number of dimensions we reduce the data down to. We hold all other parameters constant. In Table 4 the data 

quality score increases by dimension and decreases with an increase of number of nearest neighbors being used. 

Keeping the dimensions high is expected to help with the data quality score, but why adjusting the nearest neighbors 

higher negatively affects the score is not as clear. There were only two classes and each class has much more data 

than nearest neighbors. A plausible explanation would be that the score becomes more normalized to the overall data 

as the nearest neighbor count become larger. This exploration would be interesting to follow up on in a future study.  

 
Table 4. Data quality score changes over number of nearest neighbors and feature size. 

Number of Nearest Neighbors 

Reduced 

Dimension Size 

 3 11 101 1001 

10 0.7096 0.59 0.5235 0.5118 

100 0.7711 0.6738 0.6055 0.5689 

1000 0.9058 0.8556 0.8106 0.7489 

 

We also provide visuals of the data quality score for different amounts of overlap, classes and data distributions. In 

the following simulated data we only simulate in two dimensions so no dimension reduction techniques are used. In 

Figure 9 we show the overlap of two different simulated datasets and the average data quality score for the same 

class. Table 5 shows the overlap scores between the classes for each of the two datasets. In the 2 dimension case this 

aligns with our expectations that more overlap of the dataset would result in a lower data quality score. For the 

second simulated dataset in Figure 9 we see the overlap scores are not even between the two classes. Based on the 

table, class 0 is not as separated from class 1 as class 1 is separated from class 0. This can happen when points do 

not appear in the neighborhoods of points in their own neighborhood.  

 

 



10 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
Figure 9. The left simulated data has a data quality score of 0.965 and the right simulated data has a data quality score of 

0.763. Source: MITRE 

     Table 5. Overlap scores for each of the two simulated datasets in Figure 9. 

 0 1  0 1 

0 0.966 0.034 0 0.757 0.243 

1 0.036 0.964 1 0.232 0.768 

 

To show separability for more than two classes Figure 10 shows a simulated dataset of three classes with the 

corresponding overlap scores. We can see that class 1 has a much lower data quality score than class 0 or 2 because 

it is being overlapped from both directions. Also to note is that the overlap scores between class 0 and 2 are low 

compared to the other overlap scores.  

 

 
     Figure 10. The simulated data and corresponding overlap scores for a dataset with three classes. Source: MITRE 

In      Figure 11 and Figure 12 we show the data quality scores for different simulated data shaped in unique ways. 

We show these to demonstrate that our method is flexible to different types of decision boundaries. We do not 

expect our method to align with any specific classification method. It is important to remember that scores are 

normalized across rows. This implies that there is not an overall threshold for poor performance. It matters more 

how the scores along the diagonal compare to the scores off the diagonal. 



11 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
     Figure 11. Simulated Circles dataset which shows good separation and good data quality scores. Source: MITRE 

 
     Figure 12. Simulated completely random data shows poor data quality scores. Source: MITRE 

We now measure the data quality score for well-known datasets CIFAR10 and 20 Newsgroups. These datasets are 

of images and texts respectfully and are known to be good test sets for various classification methods. Table 6 shows 

the data quality scores for the CIFAR10 dataset. This dataset contains 10,000 training images and we used 

EfficientNet Small and ResNet34 for feature generation. Overall, this took 18 seconds. We see expected results that 

among the animals there is some higher overlap scores as well as with the non-biological categories there is also 

some high overlap score. Otherwise, the diagonal scores are high indicating a classification solution should be 

possible for this data. In  

Table 7 the 20 Newsgroups data quality scores are shown. We used DistilBert for feature generation. We see these 

scores are not as high on the diagonal indicating some groups will be hard to discriminate. These include 

combinations of groups that are not surprising. The overlap scores within the computer topics are all quite high. 

Also the overlap scores for the religious topics are high.  

 

Data Labeling 

We also provide examples through simulation and well-known toy datasets of points that have been labeled as 

cluster, edge and outlier. Examples of simulated 2d data align with data seen in the previous section. In Figure 13 we 

show labeled data from a 3-class simulated dataset. We see a lot of examples of points that might be considered as 

along a potential decision boundary between classes. We also see outliers that potentially moved too far into a 

neighboring data cloud to be close to the decision boundary.  

 

 



12 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

     Table 6. CIFAR10 data quality scores. 

 
Table 7. 20 Newsgroup data quality scores. 

 



13 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
     Figure 13. Labeled outliers and edges from a 3-class simulated dataset. Source: MITRE 

In Figure 14 the simulated circles data shown in Figure 11 is shown. The points labeled seem appropriate to consider 

as an edge or outlier. They may warrant additional review to ensure they were labeled correctly.  

 
    Figure 14. Labeled outliers and edges from the simulated circles dataset. Source: MITRE 

Examples from CIFAR10 and the 20 Newgroups datasets are also shown. In Figure 15 we can see examples labeled 

as outliers by our method. They are both from the class of Horse and show one image that is only a partial view of a 

horse and another example that is of a human riding a horse. In Figure 16 we show an outlier and an edge from the 

20 Newsgroup dataset. On the left is an outlier letter from the Hockey mailing list and on the right is an edge letter 

from the Atheism mailing list. In the hockey letter there is no mention of hockey and only the city where a hockey 

team is located so it is understandable this may be considered an outlier and not relevant to hockey. The Atheism 

letter talks about Jesus so may be along the line with other letters from the Christian mailing list. With our method it 

is not clear what edge the samples may be on. 



14 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

 
     Figure 15. Examples of outlier images for the class Horse from CIFAR10. 

 
Figure 16. Example letters from the 20 Newsgroup datasets labeled as outlier and edge respectively. The left letter is from the 

Hockey class, the right is from the Atheism class. 

6. CONCLUSION 

To train a good classification model with deep learning is a resource and time intensive effort. These methods help 

an analyst understand when that investment may not be worth it. Datasets these days are made up of a large number 

of samples that are impossible to individually comb through. And even when visually inspected, an analyst may not 

fully understand what may or may not be separable to a model. Many times, analysts see the quality of their dataset 

after fitting a model since it is the first opportunity to understand the performance. Before fitting, the methods in this 



15 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

paper can alert an analyst when data quality may be lacking. However, we do not recommend these methods to be 

used for a prediction on how good of a performance an analyst can expect.  

 

The data quality score uses an approximate nearest neighbor approach to determine the separability of the data for 

each class by converting unstructured data into features using pre-trained models. These pre-trained models give a 

good representation of features out of the box. A part of calculating the data quality score is evaluating individual 

points for how separated they are compared to other points in the class. We take advantage of this, and use leave-

one-out to calculate the discrepancy of data quality scores. The amount of change in score dictates whether we 

believe the point should be labeled as a part of the cluster center, a point that may affect the decision boundary or an 

outlier. Points labeled as edge and outlier can be individually evaluated for label change or removal. With the 

necessity for a large amount of data to train a meaningfully useful model, it is difficult to know how well attuned the 

data is to an AI/ML classification solution. These methods can provide an early warning that there may be 

something amiss.  

7. FUTURE WORK 

A component of this work that would be instructional would be to add in an explanation for how the data points can 

be fixed, or what is wrong with the individual data points that make them be labeled as an outlier or edge point. This 

involves using counterfactuals [11] to understand what happens when data is changed, or the minimal amount of 

change that is needed to be classified differently. Being able to move a point in feature space and see the difference 

in the image space is a difficult problem and still being explored [9]. 

 

Another area of future work would be to compare the method if a complete nearest neighbor search was done, rather 

than an approximate one. This would increase the amount of time substantially but would be beneficial to know how 

much is lost by speeding up the implementation. Tangentially related is to vary the way scores are calculated based 

on the rankings. We decided to use a linear ranking system, but other work could compare ranking systems.  

Finally, another direction to explore is how to distinguish the edge points when there are more than two classes 

being compared. It is not clear looking only at the scores which classes the points labeled as edges fall near, so a 

better understanding of the close classes would be a useful addition.



ACKNOWLEDGEMENTS 

The author would like to thank Jesse Galef, James McCeney, Marcus Tyler and Alex Odeh for their thoughtful 

comments when peer reviewing this work.  

REFERENCES 

[1] Arya, Sunil, et al. "An optimal algorithm for approximate nearest neighbor searching fixed dimensions." 

Journal of the ACM (JACM) 45.6 (1998): 891-923. 

[2] Bernhardsson, Erik. “Annoy.” https://github.com/spotify/annoy. 2013. 

[3] Bingham, Ella, and Heikki Mannila. "Random projection in dimensionality reduction: applications to image and 

text data." Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and 

data mining. 2001. 

[4] Fernández, Ángela, Juan Bella, and José R. Dorronsoro. "Supervised outlier detection for classification and 

regression." Neurocomputing 486 (2022): 77-92. 

[5] Guan, Shuyue, and Murray Loew. "A novel intrinsic measure of data separability." Applied Intelligence (2022): 

1-17. 

[6] Ho, Tin Kam and M. Basu, "Complexity measures of supervised classification problems," in IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 289-300, March 2002, doi: 

10.1109/34.990132. 

[7] Lorena, Ana C., et al. "How complex is your classification problem? a survey on measuring classification 

complexity." ACM Computing Surveys (CSUR) 52.5 (2019): 1-34. 

[8] Johnson, William B. "Extensions of Lipschitz mappings into a Hilbert space." Contemp. Math. 26 (1984): 189-

206. 

[9] Kinney, Mitchell. “Exploring Latent Space for Classification Explainability.” MITRE Technical Report (2022). 

[10] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., 

Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, 

B., Fang, L., Bai, J., & Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning 

Library [Conference paper]. Advances in Neural Information Processing Systems 32, 8024–8035. 

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf 

[11] Pearl, Judea. "The seven tools of causal inference, with reflections on machine learning." Communications of 

the ACM 62.3 (2019): 54-60. 

[12] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine Learning research 

12 (2011): 2825-2830. 

[13] Tipping, Michael E., and Christopher M. Bishop. "Mixtures of probabilistic principal component analyzers." 

Neural computation 11.2 (1999): 443-482. 

[14] Wolf, Thomas, et al. "Huggingface's transformers: State-of-the-art natural language processing." arXiv preprint 

arXiv:1910.03771 (2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/spotify/annoy


 

 
 

 

17 

Approved for Public Release: 25-0992. Distribution Unlimited.  

© 2025 The MITRE Corporation. All Rights Reserved 

 

NOTICE 
 

This software (or technical data) was produced for the U. S. 

Government under contract 17-D-0211, and is subject to the Rights in 

Data-General Clause 52.227-14, Alt. IV (DEC 2007) 

 

© 2025 The MITRE Corporation.  
 


