

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University. PNSQC.ORG
DM23-0633
Excerpt from PNSQC Proceedings
Copies may not be made or distributed for commercial use

Software Continuous Integration with Hardware

Brent Clausner
beclausner@sei.cmu.edu

Abstract

Validation and maintaining a stable code base are vital for software to be regarded as a quality product.
An open question is how to ensure that the software you are developing will not be broken by another
team within your organization making their own bug fixes? With limited hardware and growing business,
how do we ensure the product works as expected with thousands of features being developed or already
existing while new development is being done? Keeping costs down and software quality up it is
necessary to test frequent and often. The overwhelming parallel development of new code along with
feature enhancements, bug fixes and other modifications to existing code hardens the task of ensuring a
product will function as expected. Business models may not fully support the hardware needs of teams to
test a codebase appropriately to sustain high software quality. One good solution is to test periodically,
use emulation, and seek out offending “bad” code.

Biography

Brent Clausner is a DevOps Engineer who has been working in the Software Development Life Cycle for
16 years. Within this time, he has worked as a System Administrator, Software Engineer, Software
Engineer in Test, Tools Developer, and DevOps Engineer.

Brent is currently a DevOps Engineer at The Software Engineering Institute, Carnegie Mellon University.
Here he has worked with new languages to develop prototype applications, web services, and pipelines
to secure code bases for various languages. Previously he has developed detailed functional test plans,
wrote code to split a program into multiple processes for producing multiple reports, developed tools for
migrating data between systems, and setup multiple development pipelines.

Brent currently resides in Trafford, Pennsylvania along with his wife and child. Brent studied computer
programming at Pittsburgh Technical Institute and computer science at Point Park University. He is an
avid survival crafting, video game player.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

1. Introduction

Executing tests on a regular basis and doing so upon every code submission is a very important part of
ensuring an application works as expected. Doing this with software that is tied to a specific hardware can
be difficult depending on the size of the workforce for the product. If 100 submissions occur in a short
span of time, to keep moving quickly would require either a large amount of equipment or can become a
long sequential queue for executing testing. Executing continuous integration in this fashion can miss
some cross functional incompatibilities.

Having a lot of equipment is not cost effective. As the product changes new hardware will be required and
updating the testing equipment can mean downtime for testing. At this time if code changes are allowed
to go in, untested, it can result in code dependencies on “bad” code making the removal of those
changes, difficult if not impossible.

Many functional teams working on an application may have dependencies on each other that would not
show any problems with alterations to feature specific functionality until later in the release development
process. Because of this, it is important to execute tests including all current code changes at once. Also
targeting a specific feature area in testing may work most of the time, however dependent functional
areas should also be tested. In this document I’ll go over some processes and tools that I’ve experienced
use of and will share some of the benefits and pitfalls of doing things in this way.

2. Current DevOps Integration Testing

Developing an application that serves a single purpose makes for easier design and focus. Exposing
serviceable endpoints, via REST for example, need to be tested for functional completeness and needs to
be robust. A single endpoint can touch multiple functional areas. Authentication should be implemented
and used by every endpoint. The endpoint itself then may interact with another area, you can think of a
creation of an object that gets stored in a database or memory.

Most software is designed to work with a specific hardware architecture. This makes development easier
as you can implement a DevOps pipeline that covers what the application is expected to do. Cross
platform building is also possible and can add a layer of complexity but generally can be virtualized to
allow parallel building and testing.

After code is developed, the code needs to build. This is the very first step towards quality. Within this
phase unit testing can be done within the same language being used. Most languages have testing
frameworks that allow this to take place. When an engineer looks to have code submitted, the normal
phase of code review and inspection can help to alleviate issues with normal flow and typical pitfalls. If
the configuration management is using git, pipelines can be used to automatically run tests to ensure that
code meets standards necessary put forth by the organization. This is a location which can include things
like static code analysis or enforcement of coding standards can take place.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

Stages of the development phase that are being focused on. [1]

When coding is typically being done, the normal phased approach for this allows us to have our code
inspected and reviewed by peers if the team size allows it. This is then followed by unit, quality,
integration, acceptance, and system testing. Unit tests that are written either beforehand or during the
coding phase to lock in codes functionality. Quality testing is done to ensure that the code is functioning
as expected. Then testing is normally accomplished by other teams where it is worked for integration with
the rest of the code base. Acceptance testing allows it to be used by other teams. Finally, system level
testing can stress the test with more complex scenarios. [1]

3. Software for Specific Hardware

Developing software for a specific piece of custom hardware does have its own challenges. There are
multiple layers to what is needed to test a version of software. The software needs loaded unto the
system. Configurations will need to be applied after it’s initialized. Testing can then begin. At this point,
several different functional areas have already been touched. Each of those need to work for testing of
different feature areas to begin.

Getting to a point where the system is ready for testing, can take a long time. The more complex the
hardware is the longer it can take and more opportunities for things to go wrong. Using a product like
rconsole can allow connections to take place without manually being at the keyboard. This is good for
being able to access things like the BIOS. If you must issue any special commands to have the system
load in a debug mode can be done this way too. Most automation looks for output to then proceed to the
next step. Most times, initialization can have issues with timing. Order of processes coming up need to
make sure that there are no race conditions.

Most automation works such that when the output is seen, it immediately executes a command. A good
example of this would be the “login:” prompt. When you see that, the system is ready for a username to
be inputted. This can be used for ensuring that the system has loaded a specific module necessary for
testing. Some operations need to be handled with care as it may not be ready when you see the output,
but a few seconds later.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

Timing commands is also another area which can be difficult. If you work with an asynchronous system
and you issue a command that makes a call, your result of the command may not be seen as fast as the
automation can check. A lot of time this means it’s necessary to loop over a command to verify that what
you did, resulted in the expected output. The automation should not wait forever in this case and a
reasonable time should be listed in the design documentation. This factor plays into the usability of a
system that you want it to be responsive. New work may cause additional delays in commands from
running and if automation is relaxed to much that when you go to manually use it, it feels that it has too
much lag in responding to your inputs.

Looking at the initialization phase, if a change has been committed that breaks the flow for users having
things configured in a normal manner, no testing of other functional areas can take place. Using a single
main branch for code submissions can have a large impact to several teams in this case. Having multiple
branches not shared between teams can cause long delays in seeing integration problems. With specific
tests that look only at the functional area may pass or have specific requirements that other areas do not
typically use.

Integrating into a git pipeline directly can be troubling with this type of product. Having another process
required to execute commands on a system can lead to performance degradation and issues like running
out of file descriptors. With specific hardware it’s important to keep the product as close to a deliverable
as possible. Having another machine in between the product and the test execution gives another point
for failure. The more that we add in between the higher the risk for failure outside of the product and
relates to the infrastructure.

4. Emulation is Important

While executing tests on the actual product, having an emulator drastically cuts down on the cost and
time to test. Having a product that can be loaded as a Virtual Machine makes it easy to load up a system
on the fly. This can cut down time to test at any phase.

With the hardware emulated like this allows you to have a farm of bare metal machines that can be used
by any team to execute automation or manual testing on. When you combine that with continuous
integration testing, it can be very powerful. This lets you submit code in and execute tests from any team.
Having the proper code coverage is necessary to ensure that every feature area is protected.

A common template for setting the emulator makes developing testing suites for this environment quick
as well. Common methods, such as described above with initialization, can also be analyzed for speeding
up the timing on getting it ready. Shared templates allow that to be done once and every testing suite
benefits.

Having an infrastructure setup like this allows the number of tests that the system can handle to be a lot
larger than just a single machine. This also allows for multiple teams to add to the testing automation a lot
easier. Scaling up the number of bare metal machines and emulators is very easy with a setup like this. It
also does not limit you on only using emulators, but you can add actual hardware to the infrastructure if
there are specific things that can only be validated there.

Generally having a bare metal machine like an ESX server offers a good solution in this space. Having a
machine that hosts multiple virtual machines like this can offer benefits for hosting as it cuts outs
unnecessary resources. This eliminates running the operating system under the virtual machine. [2]

5. Single Main Branch for Developing

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

For a small software project having a single main branch and developing on a branch from that main is a
good way to keep the code clean. Having product release branches that are versioned are necessary for
supporting a product for the long term. If the configuration management system is setup in a way that
each functional area has its own branch, this can lead to a huge delay in changes being propagated
throughout the code tree.

Simple branching of a feature off the main branch.

Branching from main, while working on a feature area may take time and can also require multiple branch
synchronization. This can cause issues for a team working on the same areas of code, so it is a better
practice to submit smaller incremental code and have it merge in. This allows the code to have soak time
in being touched by multiple users.

More complex example of branching.

With a more complex layout of branches as an example looking at the figure above, at each merge
between branches testing would be necessary to take place to ensure that each level of automation
passes. That will take a long time for it to go from one branch to another, I have seen it take over the
course of months to propagate changes in between feature branches like this. Cherry picking changes
between branches can result in incomplete code as a feature may rely on other code that would be
needed. This can be an option, however if the code changes drastically in between picking and
developing the feature work it can be problematic with syncing and merging. This way didn’t work well
from my experience.

If we have a hundred teams working off the main line at any given time, there can be a lot of changes
being made. Each submission if it has testing being done upon submission will flood the integration
testing infrastructure can result in major delays. Using a scheduled integration testing system can
combine all the active changes at once for testing.

When you test periodically and not on every submission, you can get a better picture of quality to the
product if the testing being done covers your feature area. You will get failures, but if you have an
emulator in use this can allow you to sort out failures. If you have a simple numeric based commit system,
any number of sorting algorithms can be used. This lets you try different ones to see what works best for
you.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

Doing continuous integration testing like this requires multiple tools to get things to work well. For
instance, using git normally will fire things off immediately and if you want to schedule you need another
system. Something like Jenkins will allow you to schedule things as a cron. Periodically testing like this
would need to access hardware and it’s handling of the hardware with software running on it as well, so it
suffers from similar issues as a gitlab-runner. That requires additional software to be running on a system
to execute properly [3]. Any additional resources may impact how testing is done.

I haven’t found any good product that handles hardware management that doesn’t require a database to
be setup and managed by hand or written proprietary software. The last time that I’ve looked it was the
best practice to have the database manage the hardware with a state machine that can manage if the
gear is in use or not. There are various states that need to be taken into consideration like this such as
online, offline, in-use, and in-error. Managing emulators in this way also allows you to store proper
connection information with it. Be sure to leave a section for notes.

Integration testing like this need to still run every test suite to validate all changes. When the offending
change has been found, it can be rejected from the system to keep the main branch clean. This is why it
is so important for a feature developing team to write good tests to ensure their area will work as
designed.

A benefit of doing things this way is that you can write code and submit it after doing your due diligence of
validating the functional area the code was written for, you do not need to worry about breaking other
teams. This is because the system does the testing for you, and you need only worry about the areas that
you are aware of affecting. When it comes to areas that have multiple dependencies on, it can be good to
execute the integration tests prior to submitting the code into the main line. That should be done prior to
having the code reviewed.

Having new testing suites being developed, you can include them with the normal runs and not allow
them to be considered for code failures. It is important to have several passing runs along with a lot of
clean intermittent runs being done prior to being allowed to reject code. This gets easier as the templates
for the infrastructure and testing suites are developed.

This does not mean you cannot use something like on code submission for executing and it makes sense
to have static code analyzers to scan your code for any problems. These types of tools are still a good
thing to implement.

6. Drawbacks

Intermittent failures can be devastating and lead to false positives for valid code changes. Executing
testing on known good changes, with a lot of the same testing going on can help to identify problems with
the tests that are being executed and specific infrastructure pieces. That can be done to help make the
integration testing system work well. Sometimes it is necessary to mark test suites as not reliable and to
allow code to be submitted that causes failures in those cases.

Delays can occur because of a system like this. Having multiple “bad” code changes that break the same
area can cause problems with finding them. It may be necessary to stop allowing code submissions in to
sort out the problems. Keeping the branch clean of failures is more important for the sake of the product.
This can be minor though, as developers use the system, they learn to execute tests for other areas that
are depending on their code prior to merging.

The requirement of custom automation to accomplish this will have drawbacks of its own. The owning
organization may need to set a team itself to handle common automation techniques to have the system
run reliably.

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 7

Overall time to get code submitted and marked for approval can be a while. Working up to the last minute
is not a good idea. With scheduling periodic runs of testing, it can make it difficult for submitting code prior
to going on vacation. If the change is rejected, you may leave people depending on your code to wait on
testing or integrating with it.

7. Conclusion

Using a configuration management infrastructure like this has led me to have a passion in software
quality control. When it comes to working with many teams on the same product, I’ve seen it have many
benefits with quality. Writing test automation that protects the feature area that I am concerned about and
seeing failures for code submitted from other teams when their changes break an area that is depended
on is wonderful. Preventing code breaking changes from going into a product and being able to test ad-
hoc has led to a faster time to test with as much code changes from an entire productline.

There is a lot of data that can also be captured using systems like this. You can determine what your own
pitfalls are from submitting. It’s possible to also have a major impact fixing intermittent problems as those
are the most devastating. For me it is very satisfying to fix issues like this as they are the most difficult to
find.

References

1. Tim Menzies, William Nichols, Forrest Shull, & Lucas Layman (Retrieved on 2023, May 29) Are
delayed issues harder to resolve? Revisiting cost-to-fix of defects throughout the lifecycle.
Retrieved from: https://link.springer.com/article/10.1007/s10664-016-9469-x

2. David Davis (Retrieved on 2023, May 30) What is VMware ESXi Server and Why do I Need It?
Retrieved from: https://www.pluralsight.com/blog/it-ops/what-is-vmware-esx-server-and-why-you-
need-it

3. Install GitLab Runner (Retrieved on 2023, May 30) Retrieved from:
https://docs.gitlab.com/runner/install/index.html

https://link.springer.com/article/10.1007/s10664-016-9469-x
https://www.pluralsight.com/blog/it-ops/what-is-vmware-esx-server-and-why-you-need-it
https://www.pluralsight.com/blog/it-ops/what-is-vmware-esx-server-and-why-you-need-it
https://docs.gitlab.com/runner/install/index.html

SOFTWARE ENGINEERING INSTITUTE | CARNEGIE MELLON UNIVERSITY Design: REV-03.18.2016.0 | Template: 01.26.2023

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-
US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633
Excerpt from PNSQC Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

Legal Markings

The following markings MUST be included in work product when attached to this form and when it is published.
For purposes of blind peer review, markings may be temporarily omitted to ensure anonymity of the author(s).
Copyright 2023 Carnegie Mellon University.
This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.
Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
DM23-0633

	Legal Markings

